python+opencv实现高斯平滑滤波

穷则独善其身,达则兼善天下。你既然认准一条道路,又何必去打听要走多久。

功能:

创建两个滑动条来分别控制高斯核的size和σσ的大小,这个程序是在阈值分割的那个程序上改动的。阈值分割程序在这
注意:由于σ=0σ=0时,opencv会根据窗口大小计算出σσ,所以,从0滑动σσ的滑动条时,会出现先边清晰又变模糊的现象

python+opencv实现阈值分割
python+opencv实现霍夫变换检测直线

(2016-5-10)到OpenCV-Python Tutorials's documentation!可以下载

代码:

# -*- coding: utf-8 -*- 

import cv2

#两个回调函数
def GaussianBlurSize(GaussianBlur_size):
 global KSIZE 
 KSIZE = GaussianBlur_size * 2 +3
 print KSIZE, SIGMA
 dst = cv2.GaussianBlur(scr, (KSIZE,KSIZE), SIGMA, KSIZE) 
 cv2.imshow(window_name,dst)

def GaussianBlurSigma(GaussianBlur_sigma):
 global SIGMA
 SIGMA = GaussianBlur_sigma/10.0
 print KSIZE, SIGMA
 dst = cv2.GaussianBlur(scr, (KSIZE,KSIZE), SIGMA, KSIZE) 
 cv2.imshow(window_name,dst)

#全局变量
GaussianBlur_size = 1
GaussianBlur_sigma = 15

KSIZE = 1
SIGMA = 15
max_value = 300
max_type = 6
window_name = "GaussianBlurS Demo"
trackbar_size = "Size*2+3"
trackbar_sigema = "Sigma/10"

#读入图片,模式为灰度图,创建窗口
scr = cv2.imread("G:\homework\lena.bmp",0)
cv2.namedWindow(window_name)

#创建滑动条
cv2.createTrackbar( trackbar_size, window_name, \
     GaussianBlur_size, max_type, GaussianBlurSize )
cv2.createTrackbar( trackbar_sigema, window_name, \
     GaussianBlur_sigma, max_value, GaussianBlurSigma )
#初始化
GaussianBlurSize(1)
GaussianBlurSigma(15)

if cv2.waitKey(0) == 27: 
 cv2.destroyAllWindows()

调用:

需要把图片和cv2.pyd与GaussianBlur.py放在同一文件夹下

>>> import os
>>> os.chdir("g:\homework")
>>> import GaussianBlur
5 15
5 1.5
5 1.6
5 1.9
5 2.4
5 2.5
5 2.9
5 3.0
5 3.3
5 3.6
5 3.9
5 4.1
5 4.2
5 4.3
5 4.4
5 4.5
5 4.6
5 4.7
5 4.8

效果图:

到此这篇关于python+opencv实现高斯平滑滤波就介绍到这了。能付出爱心就是福,能消除烦恼就是慧。更多相关python+opencv实现高斯平滑滤波内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!

您可能有感兴趣的文章
python实现高斯(Gauss)迭代法的例子

Python数据可视化实现正态分布(高斯分布)

python高斯分布概率密度函数的使用详解

Python画图高斯分布的示例

Python 图像处理: 生成二维高斯分布蒙版的实例