Python数据可视化实现正态分布(高斯分布)

每件事情都必须有一个期限,否则,大多数人都会有多少时间就花掉多少时间。积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。

正态分布(Normal distribution)又成为高斯分布(Gaussian distribution)

若随机变量X服从一个数学期望为、标准方差为的高斯分布,记为:

则其概率密度函数为:

正态分布的期望值决定了其位置,其标准差决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是的正态分布:

概率密度函数



代码实现:

# Python实现正态分布
  # 绘制正态分布概率密度函数
  u = 0  # 均值μ
  u01 = -2
  sig = math.sqrt(0.2) # 标准差δ
  sig01 = math.sqrt(1)
  sig02 = math.sqrt(5)
  sig_u01 = math.sqrt(0.5)
  x = np.linspace(u - 3*sig, u + 3*sig, 50)
  x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
  x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
  x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
  y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
  y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
  y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
  y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
  plt.plot(x, y_sig, "r-", linewidth=2)
  plt.plot(x_01, y_sig01, "g-", linewidth=2)
  plt.plot(x_02, y_sig02, "b-", linewidth=2)
  plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
  # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
  plt.grid(True)
  plt.show()

以上就是Python数据可视化实现正态分布(高斯分布)。我们多么怀念过去,花儿的声音,随风飘荡的清香,荡漾起阵阵微笑更多关于Python数据可视化实现正态分布(高斯分布)请关注haodaima.com其它相关文章!

您可能有感兴趣的文章
python实现高斯(Gauss)迭代法的例子

python高斯分布概率密度函数的使用详解

Python画图高斯分布的示例

Python 图像处理: 生成二维高斯分布蒙版的实例

使用Python-OpenCV向图片添加噪声的实现(高斯噪声、椒盐噪声)