房子修得再大也是临时住所,只有那个小木匣才是永久的家,所以,屋宽不如心宽,身安不如心安!
向量点乘 (dot) 和对应分量相乘 (multiply) :
>>> a array([1, 2, 3]) >>> b array([ 1., 1., 1.]) >>> np.multiply(a,b) array([ 1., 2., 3.]) >>> np.dot(a,b) 6.0
矩阵乘法 (dot) 和对应分量相乘 (multiply) :
>>> c matrix([[1, 2, 3]]) >>> d matrix([[ 1., 1., 1.]]) >>> np.multiply(c,d) matrix([[ 1., 2., 3.]]) >>> np.dot(c,d) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
写代码过程中,*表示对应分量相乘 (multiply) :
>>> a*b array([ 1., 2., 3.]) >>> c*d Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\matrixlib\defmatrix.py", line 343, in __mul__ return N.dot(self, asmatrix(other)) ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
以上这篇对python中的乘法dot和对应分量相乘multiply详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。