基于numpy中数组元素的切片复制方法

雪花,是世界上最圣洁的花,当你静静的倾听天籁,尘世的浮躁与喧嚣,似乎都已离你远去,剩下的惟有纯净,那是心灵忘却一切的畅然,那是在没有尘埃的世界里,生命自由呼吸的平淡与安恬。

代码1:

#!/usr/bin/python


import numpy as np


arr1 = np.arange(10)
print(arr1)


slice_data = arr1[3:5]
print(slice_data)


slice_data[0] = 123


print(slice_data)
print(arr1)

类似的代码之前应用过,简单看了一下numpy中的数组切片。

程序的执行结果如下:

In [2]: %run exp01.py
[0 1 2 3 4 5 6 7 8 9]
[3 4]
[123 4]
[ 0 1 2 123 4 5 6 7 8 9]

由此得出来的结论是:切片后的变量与原始的数据共享同一数据存储。而这种特点是专门针对大数据的处理而定制的。然而,在日常的使用中总有需要对数据进行拷贝的时候,此时需要的便是显式的数据复制操作。

程序修改如下:

#!/usr/bin/python


import numpy as np


arr1 = np.arange(10)
print(arr1)


slice_data = arr1[3:5].copy()
print(slice_data)


slice_data[0] = 123


print(slice_data)
print(arr1)

程序的执行结果如下:

In [3]: %run exp01.py
[0 1 2 3 4 5 6 7 8 9]
[3 4]
[123 4]
[0 1 2 3 4 5 6 7 8 9]

由上面的结果可以看出,通过切片后复制操作生成的新的数据对象的操作与原始的数据是独立的。新的数据对象的变化并不会影响到原始数据的信息。

以上这篇基于numpy中数组元素的切片复制方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能有感兴趣的文章
python numpy中array与pandas的DataFrame转换方式

NumPy索引与切片的用法示例总结

Python多进程共享numpy 数组的方法

NumPy实现多维数组中的线性代数

解决pycharm导入numpy包的和使用时报错:RuntimeError: The current Numpy installation (‘D:\\python3.6\\lib\\site-packa的问题