numpy库与pandas库axis=0,axis= 1轴的用法详解

早上好,给您新鲜的问候,温暖的祝福,清晨,美好的开端,祝您今天精神振奋,精力充沛,心情愉快,一切都很好!

对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值:

  • axis = 0 代表对横轴操作,也就是第0轴;
  • axis = 1 代表对纵轴操作,也就是第1轴;

numpy库中横轴、纵轴 axis 参数实例详解:

In [1]: import numpy as np
#生成一个3行4列的数组
In [2]: a = np.arange(12).reshape(3,4)
In [3]: a
Out[3]:
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])
#axis= 0 对a的横轴进行操作,在运算的过程中其运算的方向表现为纵向运算
In [4]: a.sum(axis = 0)
Out[4]: array([12, 15, 18, 21])
#axis= 1 对a的纵轴进行操作,在运算的过程中其运算的方向表现为横向运算
In [5]: a.sum(axis = 1)
Out[5]: array([ 6, 22, 38])

pandas库DataFrame中横轴、纵轴 axis 参数实例详解:

In [8]: b = pd.DataFrame(np.arange(24).reshape(4,6))
In [9]: b
Out[9]:
  0  1  2  3  4  5
0  0  1  2  3  4  5
1  6  7  8  9 10 11
2 12 13 14 15 16 17
3 18 19 20 21 22 23
#axis= 0 对b的横轴进行操作,在运算的过程中其运算的方向表现为纵向运算
In [10]: b.sum(axis = 0)
Out[10]:
0  36
1  40
2  44
3  48
4  52
5  56
dtype: int64
#axis= 1 对b的横轴进行操作,在运算的过程中其运算的方向表现为纵向运算
In [11]: b.sum(axis = 1)
Out[11]:
0   15
1   51
2   87
3  123
dtype: int64

pandas库panel中axis 参数实例详解:

In [18]: np.arange(24).reshape(2,3,4)
Out[18]:
array([[[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]],
 
    [[12, 13, 14, 15],
    [16, 17, 18, 19],
    [20, 21, 22, 23]]])
#生成面板数据
In [19]: c = pd.Panel(np.arange(24).reshape(2,3,4))
In [24]: c
Out[24]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 2
Minor_axis axis: 0 to 3
#对Items axis轴的数据进行操作,也就是panel里面的0轴:
In [20]: c.sum(axis = 0)
Out[20]:
  0  1  2  3
0 12 14 16 18
1 20 22 24 26
2 28 30 32 34
对Major_axis axis轴的数据进行操作
In [21]: c.sum(axis = 1)
Out[21]:
  0  1
0 12 48
1 15 51
2 18 54
3 21 57
对Minor_axis axis轴的数据进行操作
In [22]: c.sum(axis = 2)
Out[22]:
  0  1
0  6 54
1 22 70
2 38 86

如果是2维数组,先横轴后纵轴;如果是3维数组,先最外层,然后一层一层按照先横轴再纵轴的逻辑进行匹配轴。

到此这篇关于numpy库与pandas库axis=0,axis= 1轴的用法详解就介绍到这了。万事得成于忍,与其能辩,不如能忍。更多相关numpy库与pandas库axis=0,axis= 1轴的用法详解内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!

您可能有感兴趣的文章
python numpy中array与pandas的DataFrame转换方式

NumPy索引与切片的用法示例总结

Python多进程共享numpy 数组的方法

NumPy实现多维数组中的线性代数

解决pycharm导入numpy包的和使用时报错:RuntimeError: The current Numpy installation (‘D:\\python3.6\\lib\\site-packa的问题