设z=x+y*iz+z拔=(x+y*i)+(x-y*i)=2*x所以原式可化为(x^2+y^2)+2*x*i=(3-i)*(2-i)/5=(5-5i)/5=1-i所以x^2+y^2=1; 2*x=-1由此得到x=-1/2; y=±√3/2z=-1/2±√3/2 i
设z=a+bi z+z拔=2a|z|^2+(z+z拔)i=3-i/2+i=1-i|z|^2+(z+z拔)i的实部为|z|^2=a^2+b^2=1虚部为2a=1 =>a=1/2 b=±√3/2所以z=1/2±√3/2i