常微分方程组的四阶龙格库塔数值解。

设X为n维向量,向量的各元素都是t的函数,f是已知函数,用四阶龙格库塔法解方程:
dX=f(t,X);
也就是解方程组:
dx1/dt=f1(t,x1,x2,x3,...,xn)
dx2/dt=f2(t,x1,x2,x3,...,xn)
......
dxn/dt=fn(t,x1,x2,x3,...,xn)
如何解?
单个的微分方程的龙格库塔法我已经知道了,但是方程组就没办法了。
最新回答
唯美╮似夏花

2025-06-20 03:45:43

四阶Runge-Kutta有很多种,其中一种是