如图,在直角坐标系中,抛物线y=ax^2+bx+c(a不等于0)与x轴交于点A(-1,0),B(3,0)两点,抛物线交y轴与点C(0,3,点D为抛物线顶点直线y=x-1交抛物线于点MN两点,过线段MN上一点P做y轴的平行线交抛物线于点Q 问点P坐标为何值时,线段PQ最长,最长为多少?
y=ax^2+bx+c,与x轴交于点A(-1,0),B(3,0)两点a-b+c=0,9a+3b+c=0,2a+b=0,b=-2a,c=-3a交y轴与点C(0,3,c=3,a=-1,b=2,y=ax^2+bx+c=-x^2+2x+3=-(x-1)^2+4,点D为抛物线顶点D(1,4)直线y=x-1交抛物线于点MN两点,x-1=-x^2+2x+3,x^2-x-4=0,x=(1+-√17)/2,y=(-1+-√17)/2过线段MN上一点P,P(p,p-1)做y轴的平行线:x=p,交抛物线于点Q,Q(p,-p^2+2p+3)线段PQ=|-p^2+2p+3-(p-1)|=|p^2-p+4|=|(p-1/2)^2+15/4|1/2-√17/2<=p<=1/2+√17/2p=1/2+-√17/2,PQmax=(17+15)/4=8,P(1/2+-√17/2,-1/2+-√17/2)