Python的Flask框架应用调用Redis队列数据的方法

秋天来啦!秋天来啦!田野里就是美丽的图画。花生躲在地下,包着红色的毛毯,住在土黄色的房间里睡大觉。玉米姐姐穿着绿色的裙子,在叶子上跳舞,南瓜爷爷鼓着金黄色的大肚子,坐着高级的南瓜车,一边看风景一边享受。西红柿露出火红火红的脸蛋,正对着我们微笑。谁使秋天这样美?看,田野里的菊花做出了回答,菊花顶着一个爆炸头,在微风中轻轻摇动,好像在说:是勤劳的人们画出了秋天的图画。

任务异步化
打开浏览器,输入地址,按下回车,打开了页面。于是一个HTTP请求(request)就由客户端发送到服务器,服务器处理请求,返回响应(response)内容。

我们每天都在浏览网页,发送大大小小的请求给服务器。有时候,服务器接到了请求,会发现他也需要给另外的服务器发送请求,或者服务器也需要做另外一些事情,于是最初们发送的请求就被阻塞了,也就是要等待服务器完成其他的事情。

更多的时候,服务器做的额外事情,并不需要客户端等待,这时候就可以把这些额外的事情异步去做。从事异步任务的工具有很多。主要原理还是处理通知消息,针对通知消息通常采取是队列结构。生产和消费消息进行通信和业务实现。

生产消费与队列
上述异步任务的实现,可以抽象为生产者消费模型。如同一个餐馆,厨师在做饭,吃货在吃饭。如果厨师做了很多,暂时卖不完,厨师就会休息;如果客户很多,厨师马不停蹄的忙碌,客户则需要慢慢等待。实现生产者和消费者的方式用很多,下面使用Python标准库Queue写个小例子:

import random
import time
from Queue import Queue
from threading import Thread

queue = Queue(10)

class Producer(Thread):
  def run(self):
    while True:
      elem = random.randrange(9)
      queue.put(elem)
      print "厨师 {} 做了 {} 饭 --- 还剩 {} 饭没卖完".format(self.name, elem, queue.qsize())
      time.sleep(random.random())

class Consumer(Thread):
  def run(self):
    while True:
      elem = queue.get()
      print "吃货{} 吃了 {} 饭 --- 还有 {} 饭可以吃".format(self.name, elem, queue.qsize())
      time.sleep(random.random())

def main():
  for i in range(3):
    p = Producer()
    p.start()
  for i in range(2):
    c = Consumer()
    c.start()

if __name__ == '__main__':
  main()

大概输出如下:

厨师 Thread-1 做了 1 饭 --- 还剩 1 饭没卖完
厨师 Thread-2 做了 8 饭 --- 还剩 2 饭没卖完
厨师 Thread-3 做了 3 饭 --- 还剩 3 饭没卖完
吃货Thread-4 吃了 1 饭 --- 还有 2 饭可以吃
吃货Thread-5 吃了 8 饭 --- 还有 1 饭可以吃
吃货Thread-4 吃了 3 饭 --- 还有 0 饭可以吃
厨师 Thread-1 做了 0 饭 --- 还剩 1 饭没卖完
厨师 Thread-2 做了 0 饭 --- 还剩 2 饭没卖完
厨师 Thread-1 做了 1 饭 --- 还剩 3 饭没卖完
厨师 Thread-1 做了 1 饭 --- 还剩 4 饭没卖完
吃货Thread-4 吃了 0 饭 --- 还有 3 饭可以吃
厨师 Thread-3 做了 3 饭 --- 还剩 4 饭没卖完
吃货Thread-5 吃了 0 饭 --- 还有 3 饭可以吃
吃货Thread-5 吃了 1 饭 --- 还有 2 饭可以吃
厨师 Thread-2 做了 8 饭 --- 还剩 3 饭没卖完
厨师 Thread-2 做了 8 饭 --- 还剩 4 饭没卖完

Redis 队列
Python内置了一个好用的队列结构。我们也可以是用redis实现类似的操作。并做一个简单的异步任务。

Redis提供了两种方式来作消息队列。一个是使用生产者消费模式模式,另外一个方法就是发布订阅者模式。前者会让一个或者多个客户端监听消息队列,一旦消息到达,消费者马上消费,谁先抢到算谁的,如果队列里没有消息,则消费者继续监听。后者也是一个或多个客户端订阅消息频道,只要发布者发布消息,所有订阅者都能收到消息,订阅者都是ping的。

生产消费模式
主要使用了redis提供的blpop获取队列数据,如果队列没有数据则阻塞等待,也就是监听。

import redis

class Task(object):
  def __init__(self):
    self.rcon = redis.StrictRedis(host='localhost', db=5)
    self.queue = 'task:prodcons:queue'

  def listen_task(self):
    while True:
      task = self.rcon.blpop(self.queue, 0)[1]
      print "Task get", task

if __name__ == '__main__':
  print 'listen task queue'
  Task().listen_task()

发布订阅模式
使用redis的pubsub功能,订阅者订阅频道,发布者发布消息到频道了,频道就是一个消息队列。

import redis


class Task(object):

  def __init__(self):
    self.rcon = redis.StrictRedis(host='localhost', db=5)
    self.ps = self.rcon.pubsub()
    self.ps.subscribe('task:pubsub:channel')

  def listen_task(self):
    for i in self.ps.listen():
      if i['type'] == 'message':
        print "Task get", i['data']

if __name__ == '__main__':
  print 'listen task channel'
  Task().listen_task()

Flask 入口
我们分别实现了两种异步任务的后端服务,直接启动他们,就能监听redis队列或频道的消息了。简单的测试如下:

import redis
import random
import logging
from flask import Flask, redirect

app = Flask(__name__)

rcon = redis.StrictRedis(host='localhost', db=5)
prodcons_queue = 'task:prodcons:queue'
pubsub_channel = 'task:pubsub:channel'

@app.route('/')
def index():

  html = """
<br>
<center><h3>Redis Message Queue</h3>
<br>
<a rel="nofollow noopener noreferrer" href="/prodcons">生产消费者模式</a>
<br>
<br>
<a rel="nofollow noopener noreferrer" href="/pubsub">发布订阅者模式</a>
</center>
"""
  return html


@app.route('/prodcons')
def prodcons():
  elem = random.randrange(10)
  rcon.lpush(prodcons_queue, elem)
  logging.info("lpush {} -- {}".format(prodcons_queue, elem))
  return redirect('/')

@app.route('/pubsub')
def pubsub():
  ps = rcon.pubsub()
  ps.subscribe(pubsub_channel)
  elem = random.randrange(10)
  rcon.publish(pubsub_channel, elem)
  return redirect('/')

if __name__ == '__main__':
  app.run(debug=True)

启动脚本,使用

siege -c10 -r 5 http://127.0.0.1:5000/prodcons
siege -c10 -r 5 http://127.0.0.1:5000/pubsub

可以分别在监听的脚本输入中看到异步消息。在异步的任务中,可以执行一些耗时间的操作,当然目前这些做法并不知道异步的执行结果,如果需要知道异步的执行结果,可以考虑设计协程任务或者使用一些工具如RQ或者celery等。

以上就是Python的Flask框架应用调用Redis队列数据的方法。问候不一定要慎重其事,但一定要真诚感人。更多关于Python的Flask框架应用调用Redis队列数据的方法请关注haodaima.com其它相关文章!

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战