看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容——手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法。
我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits。文本文件中是0~9的数字,但是是用二值图表示出来的,如图。我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能。
首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以我们可以将其转化为1*1024的向量。具体代码实现如下:
def img2vector(filename): imgVec = zeros((1,1024)) file = open(filename) for i in range(32): lines = file.readline() for j in range(32): imgVec[0,32*i+j] = lines[j] return imgVec
实现了图片到向量的转化之后,我们就可以对测试文件中的内容进行识别了。这里的识别我们可以使用上一篇中的自定义函数classify0,这个函数的第一个参数是测试向量,第二个参数是训练数据集,第三个参数是训练集的标签。所以,我们首先需要将训练数据集转化为(1934*1024)的矩阵,1934这里是训练集的组数即trainingDigits目录下的文件数,其对应的标签转化为(1*1934)的向量。之后要编写的代码就是对测试数据集中的每个文本文件进行识别,也就是需要将每个文件都转化成一个(1*1024)的向量,再传入classify0函数的第一个形参。整体代码如下:
def handWriteNumClassTest(): NumLabels = [] TrainingDirfile = listdir(r'D:\ipython\num_recognize\trainingDigits')#文件目录 L = len(TrainingDirfile) #该目录中有多少文件 TrainMat = zeros((L,1024)) for i in range(L): file_n = TrainingDirfile[i] fileName = file_n.split('.')[0] ClassName = int(file_n.split('_')[0]) NumLabels.append(ClassName) TrainMat[i,:] = img2vector(r'D:\ipython\num_recognize\trainingDigits\%s'%file_n) TestfileDir = listdir(r'D:\ipython\num_recognize\testDigits') error_cnt = 0.0 M = len(TestfileDir) for j in range(M): Testfile = TestfileDir[j] TestfileName = Testfile.split('.')[0] TestClassName = int(Testfile.split('_')[0]) TestVector = img2vector(r'D:\ipython\num_recognize\testDigits\%s'%Testfile) result = classify0(TestVector,TrainMat,NumLabels,3) print('the result is %d,the real answer is %d\n'%(result,TestClassName)) if result!=TestClassName: error_cnt+=1 print('the total num of errors is %f\n'%error_cnt) print('the error rate is %f\n'%(error_cnt/float(M)))
这里需要首先导入listdir方法,from os import listdir,它可以列出给定目录的文件名。对于测试的每个文件,如果识别的分类结果跟真实结果不一样,则错误数+1,最终用错误数/测试总数 来表示该模型的性能。下面给出结果
这里测试的总共946个项目中,一共有10个出现了错误,出错率为1%,这个性能还是可以接受的。有了上一篇内容的理解,这篇就简单多了吧!
训练数据集和测试集文件下载
以上就是机器学习python实战之手写数字识别。一粒灰尘,改变不了大海的明净;一颗石子,阻挡不了江河的前进;一丝乌云,遮挡不了太阳的光辉;一次灾难,破坏不了勇者的励志。更多关于机器学习python实战之手写数字识别请关注haodaima.com其它相关文章!