python微信跳一跳系列之棋子定位颜色识别

秋天是收获的季节。柿子树上缀满了小红灯笼似的柿子,沉甸甸的,把枝头都压弯了。枫树的叶子火红火红的,像一堆正在燃烧的火焰。那梧桐树的枯叶在秋风中纷纷飘落下来,像翩翩起舞的金色蝴蝶。

python微信跳一跳,前言

这是python玩跳一跳系列博文中一篇,主要内容是用颜色识别的方法来进行跳跳小人的定位。

颜色识别

过观察,我们可以发现,尽管背景和棋子在不停的变化,但跳跳小人的形状和颜色基本保持不变,对于形状,我们在上一篇博文中已经采用模板匹配的方法来进行识别定位,效果非常好。这一篇博文就来对颜色识别进行验证。

基本思路

用HSV颜色空间对输入的图片进行处理,用某种指定的颜色进行蒙版mask处理进而得到二值化的黑白图像,膨胀和腐蚀后去除噪点,对轮廓区域进行计算,画出圆心和质心位置,并实现动态的跟踪。
其基本的步骤如下:
设定需要的颜色阈值
读入图像
转化为HSV图像
采用颜色的蒙版进行二值化处理得到黑白图像
降噪和轮廓处理
绘出圆心

python3.6代码

import cv2 
import numpy as np 
import time

lower_blue = np.array([115,75,75]) #设定蓝色的阈值
upper_blue = np.array([130,255,125])

frame=cv2.imread('001.png')

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #转到HSV空间
mask_blue = cv2.inRange(hsv, lower_blue, upper_blue)
cnts = cv2.findContours(mask_blue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] 
if len(cnts) > 0: 
 c = max(cnts, key = cv2.contourArea) #找到面积最大的轮廓
 ((x, y), radius) = cv2.minEnclosingCircle(c) #确定面积最大的轮廓的外接圆

 center= (int(x),int(y))
 cv2.circle(frame, center, int(radius+10), (0, 0, 255), 3) #画出圆心 
 cv2.circle(frame, center, 3, (0, 0, 255), -1)
 cv2.circle(hsv, center, int(radius+10), (255, 255, 255), 3) #画出圆心 
 cv2.circle(hsv, center, 3, (0, 0, 255), -1) 
 cv2.circle(mask_blue, center, int(radius+10), (255, 255, 255), 3) #画出圆心 
 cv2.circle(mask_blue, center, 3, (0, 0, 255), -1) 

cv2.imshow('frame',frame)
cv2.imshow('hsv',hsv)
cv2.imshow('mask',mask_blue)
if cv2.waitKey(0)==ord('q'):
 cv2.destroyAllWindows()

静态图片识别效果


左边是原始图片,中间是蒙版后的二值图,右边就是HSV图像,识别效果还是不错的。
可以看到,目前选定的颜色基本可以将小人的轮廓全部筛选出来,其最大的部分恰好就在底盘,圆心位置正是我们需要的。

动态实时识别

我们给出动态图,可以看一下动态实时识别的效果。

评价

采用颜色来对跳跳小人的底盘位置进行识别和定位效果不错,而且这种方法和手机的像素及屏幕大小无关,真正实现了各平台通用。

预告

在下一篇博文中,我会对github上wechat-jump所采用的颜色遍历方法进行验证,敬请期待。

以上就是python微信跳一跳系列之棋子定位颜色识别。不完美又何妨,万物皆有裂隙,那是光进来的地方。更多关于python微信跳一跳系列之棋子定位颜色识别请关注haodaima.com其它相关文章!

您可能有感兴趣的文章
使用Python实现跳一跳自动跳跃功能

python微信跳一跳系列之色块轮廓定位棋盘

python微信跳一跳系列之自动计算跳一跳距离

python微信跳一跳系列之棋子定位像素遍历

python微信跳一跳游戏辅助代码解析