python实现简单遗传算法

虽然春天的劲风,着实让我不太喜欢,但不得不说,春天是个好季节,俗话说 "一年之际在于春 ",春天是一年的开始,也是让人充满希望和幻想的季节。刚刚历经了寒冬的人们,开始在春天慢慢苏醒,他们慢慢的重拾自己的梦想,渐渐骨起斗志,一步步朝着自己的梦想出发,一点点靠近理想的终端。

今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下。

首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。

以目标式子 y = 10 * sin(5x) + 7 * cos(4x)为例,计算其最大值

首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化

pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
pop = geneEncoding(pop_size, chrom_length) 

其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下

def geneEncoding(pop_size, chrom_length): 
 pop = [[]] 
 for i in range(pop_size): 
  temp = [] 
  for j in range(chrom_length): 
   temp.append(random.randint(0, 1)) 
  pop.append(temp) 
 
 return pop[1:] 

编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下

# 0.0 coding:utf-8 0.0 
# 解码并计算值 
 
import math 
 
 
def decodechrom(pop, chrom_length): 
 temp = [] 
 for i in range(len(pop)): 
  t = 0 
  for j in range(chrom_length): 
   t += pop[i][j] * (math.pow(2, j)) 
  temp.append(t) 
 return temp 
 
 
def calobjValue(pop, chrom_length, max_value): 
 temp1 = [] 
 obj_value = [] 
 temp1 = decodechrom(pop, chrom_length) 
 for i in range(len(temp1)): 
  x = temp1[i] * max_value / (math.pow(2, chrom_length) - 1) 
  obj_value.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) 
 return obj_value 

有了具体的值和对应的基因序列,然后进行一次淘汰,目的是淘汰掉一些不可能的坏值。这里由于是计算最大值,于是就淘汰负值就好了

# 0.0 coding:utf-8 0.0 
 
# 淘汰(去除负值) 
 
 
def calfitValue(obj_value): 
 fit_value = [] 
 c_min = 0 
 for i in range(len(obj_value)): 
  if(obj_value[i] + c_min > 0): 
   temp = c_min + obj_value[i] 
  else: 
   temp = 0.0 
  fit_value.append(temp) 
 return fit_value 

然后就是进行选择,这是整个遗传算法最核心的部分。选择实际上模拟生物遗传进化的优胜劣汰,让优秀的个体尽可能存活,让差的个体尽可能的淘汰。个体的好坏是取决于个体适应度。个体适应度越高,越容易被留下,个体适应度越低越容易被淘汰。具体的代码如下

# 0.0 coding:utf-8 0.0 
# 选择 
 
import random 
 
 
def sum(fit_value): 
 total = 0 
 for i in range(len(fit_value)): 
  total += fit_value[i] 
 return total 
 
 
def cumsum(fit_value): 
 for i in range(len(fit_value)-2, -1, -1): 
  t = 0 
  j = 0 
  while(j <= i): 
   t += fit_value[j] 
   j += 1 
  fit_value[i] = t 
  fit_value[len(fit_value)-1] = 1 
 
 
def selection(pop, fit_value): 
 newfit_value = [] 
 # 适应度总和 
 total_fit = sum(fit_value) 
 for i in range(len(fit_value)): 
  newfit_value.append(fit_value[i] / total_fit) 
 # 计算累计概率 
 cumsum(newfit_value) 
 ms = [] 
 pop_len = len(pop) 
 for i in range(pop_len): 
  ms.append(random.random()) 
 ms.sort() 
 fitin = 0 
 newin = 0 
 newpop = pop 
 # 转轮盘选择法 
 while newin < pop_len: 
  if(ms[newin] < newfit_value[fitin]): 
   newpop[newin] = pop[fitin] 
   newin = newin + 1 
  else: 
   fitin = fitin + 1 
 pop = newpop 

以上代码主要进行了3个操作,首先是计算个体适应度总和,然后在计算各自的累积适应度。这两步都好理解,主要是第三步,转轮盘选择法。这一步首先是生成基因总数个0-1的小数,然后分别和各个基因的累积个体适应度进行比较。如果累积个体适应度大于随机数则进行保留,否则就淘汰。这一块的核心思想在于:一个基因的个体适应度越高,他所占据的累计适应度空隙就越大,也就是说他越容易被保留下来。
选择完后就是进行交配和变异,这个两个步骤很好理解。就是对基因序列进行改变,只不过改变的方式不一样

交配:

# 0.0 coding:utf-8 0.0 
# 交配 
 
import random 
 
 
def crossover(pop, pc): 
 pop_len = len(pop) 
 for i in range(pop_len - 1): 
  if(random.random() < pc): 
   cpoint = random.randint(0,len(pop[0])) 
   temp1 = [] 
   temp2 = [] 
   temp1.extend(pop[i][0:cpoint]) 
   temp1.extend(pop[i+1][cpoint:len(pop[i])]) 
   temp2.extend(pop[i+1][0:cpoint]) 
   temp2.extend(pop[i][cpoint:len(pop[i])]) 
   pop[i] = temp1 
   pop[i+1] = temp2 

变异:

# 0.0 coding:utf-8 0.0 
# 基因突变 
 
import random 
 
 
def mutation(pop, pm): 
 px = len(pop) 
 py = len(pop[0]) 
  
 for i in range(px): 
  if(random.random() < pm): 
   mpoint = random.randint(0, py-1) 
   if(pop[i][mpoint] == 1): 
    pop[i][mpoint] = 0 
   else: 
    pop[i][mpoint] = 1 

整个遗传算法的实现完成了,总的调用入口代码如下

# 0.0 coding:utf-8 0.0 
 
import matplotlib.pyplot as plt 
import math 
 
from calobjValue import calobjValue 
from calfitValue import calfitValue 
from selection import selection 
from crossover import crossover 
from mutation import mutation 
from best import best 
from geneEncoding import geneEncoding 
 
print 'y = 10 * math.sin(5 * x) + 7 * math.cos(4 * x)' 
 
 
# 计算2进制序列代表的数值 
def b2d(b, max_value, chrom_length): 
 t = 0 
 for j in range(len(b)): 
  t += b[j] * (math.pow(2, j)) 
 t = t * max_value / (math.pow(2, chrom_length) - 1) 
 return t 
 
pop_size = 500  # 种群数量 
max_value = 10  # 基因中允许出现的最大值 
chrom_length = 10  # 染色体长度 
pc = 0.6   # 交配概率 
pm = 0.01   # 变异概率 
results = [[]]  # 存储每一代的最优解,N个二元组 
fit_value = []  # 个体适应度 
fit_mean = []  # 平均适应度 
 
# pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(pop_size)] 
pop = geneEncoding(pop_size, chrom_length) 
 
for i in range(pop_size): 
 obj_value = calobjValue(pop, chrom_length, max_value)  # 个体评价 
 fit_value = calfitValue(obj_value)  # 淘汰 
 best_individual, best_fit = best(pop, fit_value)  # 第一个存储最优的解, 第二个存储最优基因 
 results.append([best_fit, b2d(best_individual, max_value, chrom_length)]) 
 selection(pop, fit_value)  # 新种群复制 
 crossover(pop, pc)  # 交配 
 mutation(pop, pm)  # 变异 
 
results = results[1:] 
results.sort() 
 
X = [] 
Y = [] 
for i in range(500): 
 X.append(i) 
 t = results[i][0] 
 Y.append(t) 
 
plt.plot(X, Y) 
plt.show() 

最后调用了一下matplotlib包,把500代最优解的变化趋势表现出来。

完整代码可以在github 查看

本文python实现简单遗传算法到此结束。刚走出校门的时候,如果能够找到好的单位,好的就业岗位的话,应当先就业去学习一些东西。当你有必须积累的时候,再创业,我相信成功的几率会更大。小编再次感谢大家对我们的支持!

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战