Python数据集切分实例

这时我轻轻地闭上了眼睛,我好像来到童话世界,好像在和小鸟讨论秋天的美景,好像在和小草拍秋天的照片。农民伯伯在田野里收获了庄稼,果农们在果园里收获了果子,我们在学校里收获快乐、收获知识、收获成长。

在处理数据过程中经常要把数据集切分为训练集和测试集,因此记录一下切分代码。

'''
data:数据集
test_ratio:测试机占比
如果data为numpy.numpy.ndarray直接使用此代码
如果data为pandas.DatFrame类型则
  return data[train_indices],data[test_indices]
修改为
  return data.iloc[train_indices],data.iloc[test_indices]
'''
def split_train(data,test_ratio):
  shuffled_indices=np.random.permutation(len(data))
  test_set_size=int(len(data)*test_ratio)
  test_indices =shuffled_indices[:test_set_size]
  train_indices=shuffled_indices[test_set_size:]
  return data[train_indices],data[test_indices]

测试代码如下:

import numpy as np
import pandas as pd
data=np.random.randint(100,size=[25,4])
print(data)

结果如下:

从上图可以看出,原数据集按照5:1被随机分为两部分。但是此种方法存在一个缺点–每次调用次函数切分同一个数据集切分出来的结果都不一样,因此常在np.random.permutation(len(data))先调用np.random.seed(int)函数,来确保每次切分来的结果相同。

因此将上述函数改为:

def split_train(data,test_ratio):
  np.random.seed(43)
  shuffled_indices=np.random.permutation(len(data))
  test_set_size=int(len(data)*test_ratio)
  test_indices =shuffled_indices[:test_set_size]
  train_indices=shuffled_indices[test_set_size:]
  return data[train_indices],data[test_indices]

这个函数np.random.seed(43)当参数为同一整数时产生的随机数相同。

以上这篇Python数据集切分实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战