我和你,或许分开才是最好的选择,那些曾经的过客,就当做最美丽的风景线,在以后的以后,我会好好坚强。
0.前言
添加colormap的对象是灰度图,可以变成热量图,从而更加明显的发现一些规律,适用于一些雷达图像等
from PIL import Image # 将彩色图片转换成黑白图片 im=Image.open("./pic.jpg").convert('L') # 保存图片 im.save("image.jpg")
1.从灰色图片中读取数据,转换成colormap图
import matplotlib.pyplot as plt import matplotlib.image as mpimg import matplotlib as mpl from PIL import Image import numpy as np # 自定义colormap def colormap(): return mpl.colors.LinearSegmentedColormap.from_list('cmap', ['#FFFFFF', '#98F5FF', '#00FF00', '#FFFF00','#FF0000', '#8B0000'], 256) # 读取灰度图 data=mpimg.imread('./gray.jpg') # 如果需要固定colorbar的范围,可以设置参数vmin,vmax,具体参考 #http://matplotlib.org/api/image_api.html # 设定每个图的colormap和colorbar所表示范围是一样的,即归一化 plt.imsave('colormap.jpg',data, cmap=colormap())
这里没有显示出来colorbar的数值分布,得到的图像是等大的
2.从txt文本中读取二维数据,转换成自定义colormap图
#python 3 import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.colors as colors # load data def loaddata(i): # 文件编号 path = './input/data/trainPingliu/trainPingliu%d.txt' % i data = np.loadtxt(path) return data # 生成图片格式自定义 def colormap(): # 白青绿黄红 cdict = ['#FFFFFF', '#9ff113', '#5fbb44', '#f5f329', '#e50b32'] # 按照上面定义的colordict,将数据分成对应的部分,indexed:代表顺序 return colors.ListedColormap(cdict, 'indexed') # for i in range(1, 10000): # 加载数据 data = loaddata(1) fig = plt.figure() # 加载图片设置 my_cmap = colormap() # 第一个子图,按照默认配置 ax = fig.add_subplot(221) ax.imshow(data) # 第二个子图,使用api自带的colormap ax = fig.add_subplot(222) cmap = mpl.cm.bwr # 蓝,白,红 ax.imshow(data, cmap=cmap) # 第三个子图增加一个colorbar ax = fig.add_subplot(223) cmap = mpl.cm.winter # 冬季风格 im = ax.imshow(data, cmap=my_cmap) plt.colorbar(im) # 增加colorbar # 第四个子图可以调整colorbar ax = fig.add_subplot(224) cmap = mpl.cm.rainbow # 这里设置colormap的固定值 norm = mpl.colors.Normalize(vmin=-1, vmax=1) im=ax.imshow(data,cmap=cmap) plt.colorbar(im,cmap=cmap, norm=norm,ticks=[-1,0,1]) # 显示 plt.show()
以上这篇Python matplotlib的使用并自定义colormap的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。