对pandas写入读取h5文件的方法详解

人只需不取得标的目标,就不会取得自己。有没有人爱,我们也要努力做一个可爱的人。不埋怨谁,不嘲笑谁,也不羡慕谁,阳光下灿烂,风雨中奔跑,做自己的梦,走自己的路。

1、引言

通过参考相关博客对hdf5格式简要介绍。

hdf5在存储的是支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的。 使用压缩可以提磁盘利用率,节省空间。 开启压缩也没有什么劣势,只会慢一点点。 压缩在小数据量的时候优势不明显,数据量大了才有优势。 同时发现hdf读取文件的时候只能是一次写,写的时候可以append,可以put,但是写完成了之后关闭文件,就不能再写了, 会覆盖。

另外,为什么单独说pandas,主要因为本人目前对于h5py这个包的理解不是很深入,不知道如果使用该包存pd.DataFrame格式的文件,不像numpy格式文件可以直接存储,因此本人只能依赖pandas自带一些函数进行处理。

2、写入文件

使用函数:pd.HDFStore

import numpy as np
import pandas as pd
####生成9000,0000条数据,9千万条
a = np.random.standard_normal((90000000,4))
b = pd.DataFrame(a)
####普通格式存储:
h5 = pd.HDFStore('/data/stock/test_s.h5','w')
h5['data'] = b
h5.close()

####压缩格式存储
h5 = pd.HDFStore('/data/stock/test_c4.h5','w', complevel=4, complib='blosc')
h5['data'] = b
h5.close()

3、读取文件

使用函数:pd.read_hdf

参数:文件名,key

data=pd.read_hdf('/data/stock/test_c4.h5',key='data')

以上这篇对pandas写入读取h5文件的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能有感兴趣的文章
pandas取dataframe特定行列的实现方法

pandas DataFrame.shift()函数的具体使用

Pandas实现聚合运算agg()的示例代码

pandas中DataFrame重置索引的几种方法

pandas读取excel时获取读取进度的实现