Python+OpenCV感兴趣区域ROI提取方法

在放大镜下,你可以看到每一片雪花都是一幅幅精美的图案:有的是晶莹的薄片,有的像白亮的银针,有的像一把张开的小扇,有的像夜空的星星……

方法一:使用轮廓

步骤1

"""src为原图"""
ROI = np.zeros(src.shape, np.uint8)   #感兴趣区域ROI
proimage = src.copy()     #复制原图
"""提取轮廓""" 
proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY)          #转换成灰度图
proimage=cv2.adaptiveThreshold(proimage,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,7,7)            
proimage,contours,hierarchy=cv2.findContours(proimage,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE) #提取所有的轮廓  

步骤2

"""ROI提取"""
cv2.drawContours(ROI, contours, 1,(255,255,255),-1)    #ROI区域填充白色,轮廓ID1
ROI=cv2.cvtColor(ROI,cv2.COLOR_BGR2GRAY)          #转换成灰度图
ROI=cv2.adaptiveThreshold(ROI,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,7,7)                   #自适应阈值化
imgroi= cv2.bitwise_and(ROI,proimage)            #图像交运算 ,获取的是原图处理——提取轮廓后的ROI
2.#imgroi = cv2.bitwise_and(src,src,mask=ROI) 
3.#imgroi = ROI & src 无需灰度+阈值,获取的是原图中的ROI

方法二

img1 = cv2.imread('roi.jpg')
roi = img1[0:rows, 0:cols ]

以上这篇Python+OpenCV感兴趣区域ROI提取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战