Python基于jieba库进行简单分词及词云功能实现方法

丹桂飘香、秋风萧瑟、黄叶遍地。当头顶掠过个性的风,我知道,十一月来了。虽然红枫妖娆,野草还在坚持,可,白杨还是降下了翠绿的旗帜。一行雁鸣慢慢合拢台幕,盛宴即将结束。

本文实例讲述了Python基于jieba库进行简单分词及词云功能实现方法。分享给大家供大家参考,具体如下:

目标:

1.导入一个文本文件
2.使用jieba对文本进行分词
3.使用wordcloud包绘制词云

环境:

Python 3.6.0 |Anaconda 4.3.1 (64-bit)

工具:

jupyter notebook

从网上下载了一篇小说《老九门》,以下对这篇小说进行分词,并绘制词云图。

分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/jieba

或点击此处本站下载jieba库

词云使用wordcloud包,参考:https://github.com/amueller/word_cloud

或点击此处本站下载wordcloud库

这两个包都不是anaconda自带的,需要按官网的步骤安装。

import wordcloud as wc
import jieba
import matplotlib.pyplot as plt
from scipy.misc import imread
%matplotlib inline
plt.rc('figure', figsize=(15, 15))

首先读取文件,保存到一个字符串对象中。

all_text = open(file='老九门.txt', encoding='utf-8').read()

查看一下字符串的内容,发现其中有很多多余的字符:'\n'、'\u3000'。

all_text

'\ufeff《盗墓笔记》中,一段与二月红有关的故事。\n《老九门》壹:二月红①\n丝帐许久没有换过了。\n\u3000\u3000她半夜入不了眠,睁开眼睛,便看到床边垂下的帐面,在月光下看着有一死暗淡。原来可是丝丝的带着光亮,好像最白的银拉出来的丝一般。\n\u3000\u3000果然再好的东西,也总是由好往坏了去。\n\u3000\u3000以往一过立秋,... ...<以下省略>

在分词之前先把这些多余字符剔除掉。

all_text = all_text.replace('\n', '' )
all_text = all_text.replace('\u3000', '')

下面先尝试做一次分词,把所有分词用空格分开,输出看一下分词的结果:

seg_list = jieba.cut(all_text, cut_all=False)
words =' '
for seg in seg_list:
  words = words + seg + ' '
print(words)

 《 盗墓 笔记 》 中 , 一段 与 二月 红 有关 的 故事 。 《 老 九门 》 壹 : 二月 红 ① 丝帐 许久 没有 换过 了 。 她 半夜 入 不了 眠 , 睁开眼睛 , 便 看到 床边 垂下 的 帐面 , 在 月光 下 看着 有 一死 暗淡 。 原来 可是 丝丝 的 带 着 光亮 , 好像 最白 的 银拉 出来 的 丝 一般 。 果然 再 好 的 东西 , 也 总是 由 好 往坏 了 去 。 以往 一过 立秋 , 她 就 会 亲自 拆 下 这块 帐头 , 亲自 去 漂洗 , 她 知道 这 东西 的 脾气 , 得 小心 伺候 着 , 一寸 一寸 地过 水 。 如今 不让 她 下床 , 这 东西 没 人 伺候 了 , 倒 也 显得 越来越 不值 当 被 这么 细心 对待 起来 。 也许 , 下 一个 立秋 的 时候 , 才 有人 敢动 这个 东西 , 但 那个 人 , 必然 不是 自己 了 。 中午 大夫 和 他 说 的 那些 话 , 虽然 是 在 屋外 , 但是 她 还是 听到 了 几分 , 自己 的 病 , 不 知道 还有 多少 日子 可熬 。 她 舒 了 口气 , 胸中 的 那丝 痛楚 似乎 好 了 一些 。 多少 日
... ...<以下省略>

从分词结果里可以发现,有一些固定词语,例如“盗墓笔记”、“老九门”、“二月红”、“张大佛爷”、“齐铁嘴”等书名、人名被分开了。在这篇小说的环境下,这些才成为固定词语,而默认的分词策略根据通常的认识来分词的。

针对这个情况,jieba有一个“用户词典”的机制,把用户认为应该成为整词的,放到词典里,在分词的时遇到它们,就会当作一个整体。

在目录下新建一个文本文件dick.txt,输入以下词语:

老九门
二月红
盗墓笔记
张大佛爷
解九爷
解九
狗五

以下为jieba引入这个词典文件,再做一次分词:

jieba.load_userdict('dict.txt')
all_seg = jieba.cut(all_text, cut_all=False)
all_word =' '
for seg in all_seg:
  all_word = all_word + seg + ' '
print(all_word)

 《 盗墓笔记 》 中 , 一段 与 二月红 有关 的 故事 。 《 老九门 》 壹 : 二月红 ① 丝帐 许久 没有 换过 了 。 她 半夜 入 不了 眠 , 睁开眼睛 , 便 看到 床边 垂下 的 帐面 , 在 月光 下 看着 有 一死 暗淡 。 原来 可是 丝丝 的 带 着 光亮 , 好像 最白 的 银拉 出来 的 丝 一般 。 果然 再 好 的 东西 , 也 总是 由 好 往坏 了 去 。 以往 一过 立秋 , 她 就 会 亲自 拆 下 这块 帐头 , 亲自 去 漂洗 , 她 知道 这 东西 的 脾气 , 得 小心 伺候 着 , 一寸 一寸 地过 水 。 如今 不让 她 下床 , 这 东西 没 人 伺候 了 , 倒 也 显得 越来越 不值 当 被 这么 细心 对待 起来 。 也许 , 下 一个 立秋 的 时候 , 才 有人 敢动 这个 东西 , 但 那个 人 , 必然 不是 自己 了 。 中午 大夫 和 他 说 的 那些 话 , 虽然 是 在 屋外 , 但是 她 还是 听到 了 几分 , 自己 的 病 , 不 知道 还有 多少 日子 可熬 。 她 舒 了 口气 , 胸中 的 那丝 痛楚 似乎 好 了 一些 。 多少 日子 了 ?
... ...<以下省略>

从这个结果来看,就不会再把人名、书名分开了。

以下开始制作词云。

制作词云,使用的是wordcloud包,由两个参数需要特别注意,一个是字体,一个是背景图片。字体好理解,就不解释了。背景图片,是词云显示的背景形状。这里选用了一个心形图案。

以下是词云制作过程:

# 引入字体
font=r"C:\WINDOWS\Fonts\simhei.ttf"
#读取背景图片,生成矩阵
color_mask = imread("love.jpg")
# 生成词云对象,设置参数
cloud = wc.WordCloud( font_path=font,#设置字体
           background_color="black", #背景颜色
           max_words=2000,# 词云显示的最大词数
           mask=color_mask,#设置背景图片
           max_font_size=100, #字体最大值
           random_state=42)
# 绘制词云图
mywc = cloud.generate(all_word)
plt.imshow(mywc)

<matplotlib.image.AxesImage at 0x1ecebf5e588>

# 把词云图保存到磁盘文件中
mywc.to_file('老九门wordcloud.png')

<wordcloud.wordcloud.WordCloud at 0x1ece4b9bc88>

以上就是使用python进行分词,并绘制词云图的简单操作。对于jieba和wordcloud的更高级的使用方法,还需要进一步研究和学习。

希望本文所述对大家Python程序设计有所帮助。

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战