生活中只有两种选择:重新开始,成为自己生活的主角;或留在原处并成为他人的支持角色。生活中,很多时候都需要我们要耐心,耐心做人,耐心做事,更要耐心生活。
本文实例为大家分享了Python Grid使用和布局的具体代码,供大家参考,具体内容如下
#!/usr/bin/env python import vtk # 这个示例主要用于将不同的图像对象显示到指定的Grid中 def main(): colors = vtk.vtkNamedColors() # Set the background color. colors.SetColor("BkgColor", [51, 77, 102, 255]) titles = list() textMappers = list() textActors = list() uGrids = list() mappers = list() actors = list() renderers = list() uGrids.append(MakeHexagonalPrism()) titles.append('Hexagonal Prism') uGrids.append(MakeHexahedron()) titles.append('Hexahedron') uGrids.append(MakePentagonalPrism()) titles.append('Pentagonal Prism') uGrids.append(MakePolyhedron()) titles.append('Polyhedron') uGrids.append(MakePyramid()) titles.append('Pyramid') uGrids.append(MakeTetrahedron()) titles.append('Tetrahedron') uGrids.append(MakeVoxel()) titles.append('Voxel') uGrids.append(MakeWedge()) titles.append('Wedge') renWin = vtk.vtkRenderWindow() renWin.SetWindowName('Cell3D Demonstration') iRen = vtk.vtkRenderWindowInteractor() iRen.SetRenderWindow(renWin) # Create one text property for all textProperty = vtk.vtkTextProperty() textProperty.SetFontSize(16) textProperty.SetJustificationToCentered() # Create and link the mappers actors and renderers together. # 为每个独立的文本图形对象创建独立的Mapper和Actors,并绑定至每个grid中 for i in range(0, len(uGrids)): textMappers.append(vtk.vtkTextMapper()) textActors.append(vtk.vtkActor2D())# mappers.append(vtk.vtkDataSetMapper()) actors.append(vtk.vtkActor()) renderers.append(vtk.vtkRenderer()) mappers[i].SetInputData(uGrids[i]) actors[i].SetMapper(mappers[i]) actors[i].GetProperty().SetColor( colors.GetColor3d("Seashell")) renderers[i].AddViewProp(actors[i]) textMappers[i].SetInput(titles[i]) textMappers[i].SetTextProperty(textProperty) textActors[i].SetMapper(textMappers[i]) textActors[i].SetPosition(120, 16) renderers[i].AddViewProp(textActors[i]) renWin.AddRenderer(renderers[i]) gridDimensions = 3 rendererSize = 300 renWin.SetSize(rendererSize * gridDimensions, rendererSize * gridDimensions) # 渲染图形对象至不同的显示区域 for row in range(0, gridDimensions): for col in range(0, gridDimensions): index = row * gridDimensions + col # (xmin, ymin, xmax, ymax) viewport = [ float(col) * rendererSize / (gridDimensions * rendererSize), float(gridDimensions - (row + 1)) * rendererSize / (gridDimensions * rendererSize), float(col + 1) * rendererSize / (gridDimensions * rendererSize), float(gridDimensions - row) * rendererSize / (gridDimensions * rendererSize)] if index > len(actors) - 1: # Add a renderer even if there is no actor. # This makes the render window background all the same color. ren = vtk.vtkRenderer() ren.SetBackground(colors.GetColor3d("BkgColor")) ren.SetViewport(viewport) renWin.AddRenderer(ren) continue renderers[index].SetViewport(viewport) renderers[index].SetBackground(colors.GetColor3d("BkgColor")) renderers[index].ResetCamera() renderers[index].GetActiveCamera().Azimuth(30) renderers[index].GetActiveCamera().Elevation(-30) renderers[index].GetActiveCamera().Zoom(0.85) renderers[index].ResetCameraClippingRange() iRen.Initialize() renWin.Render() iRen.Start() def MakeHexagonalPrism(): """ 3D: hexagonal prism: a wedge with an hexagonal base. Be careful, the base face ordering is different from wedge. """ numberOfVertices = 12 points = vtk.vtkPoints() points.InsertNextPoint(0.0, 0.0, 1.0) points.InsertNextPoint(1.0, 0.0, 1.0) points.InsertNextPoint(1.5, 0.5, 1.0) points.InsertNextPoint(1.0, 1.0, 1.0) points.InsertNextPoint(0.0, 1.0, 1.0) points.InsertNextPoint(-0.5, 0.5, 1.0) points.InsertNextPoint(0.0, 0.0, 0.0) points.InsertNextPoint(1.0, 0.0, 0.0) points.InsertNextPoint(1.5, 0.5, 0.0) points.InsertNextPoint(1.0, 1.0, 0.0) points.InsertNextPoint(0.0, 1.0, 0.0) points.InsertNextPoint(-0.5, 0.5, 0.0) hexagonalPrism = vtk.vtkHexagonalPrism() for i in range(0, numberOfVertices): hexagonalPrism.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.InsertNextCell(hexagonalPrism.GetCellType(), hexagonalPrism.GetPointIds()) ug.SetPoints(points) return ug def MakeHexahedron(): """ A regular hexagon (cube) with all faces square and three squares around each vertex is created below. Setup the coordinates of eight points (the two faces must be in counter clockwise order as viewed from the outside). As an exercise you can modify the coordinates of the points to create seven topologically distinct convex hexahedras. """ numberOfVertices = 8 # Create the points points = vtk.vtkPoints() points.InsertNextPoint(0.0, 0.0, 0.0) points.InsertNextPoint(1.0, 0.0, 0.0) points.InsertNextPoint(1.0, 1.0, 0.0) points.InsertNextPoint(0.0, 1.0, 0.0) points.InsertNextPoint(0.0, 0.0, 1.0) points.InsertNextPoint(1.0, 0.0, 1.0) points.InsertNextPoint(1.0, 1.0, 1.0) points.InsertNextPoint(0.0, 1.0, 1.0) # Create a hexahedron from the points hex_ = vtk.vtkHexahedron() for i in range(0, numberOfVertices): hex_.GetPointIds().SetId(i, i) # Add the points and hexahedron to an unstructured grid uGrid = vtk.vtkUnstructuredGrid() uGrid.SetPoints(points) uGrid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds()) return uGrid def MakePentagonalPrism(): numberOfVertices = 10 # Create the points points = vtk.vtkPoints() points.InsertNextPoint(11, 10, 10) points.InsertNextPoint(13, 10, 10) points.InsertNextPoint(14, 12, 10) points.InsertNextPoint(12, 14, 10) points.InsertNextPoint(10, 12, 10) points.InsertNextPoint(11, 10, 14) points.InsertNextPoint(13, 10, 14) points.InsertNextPoint(14, 12, 14) points.InsertNextPoint(12, 14, 14) points.InsertNextPoint(10, 12, 14) # Pentagonal Prism pentagonalPrism = vtk.vtkPentagonalPrism() for i in range(0, numberOfVertices): pentagonalPrism.GetPointIds().SetId(i, i) # Add the points and hexahedron to an unstructured grid uGrid = vtk.vtkUnstructuredGrid() uGrid.SetPoints(points) uGrid.InsertNextCell(pentagonalPrism.GetCellType(), pentagonalPrism.GetPointIds()) return uGrid def MakePolyhedron(): """ Make a regular dodecahedron. It consists of twelve regular pentagonal faces with three faces meeting at each vertex. """ # numberOfVertices = 20 numberOfFaces = 12 # numberOfFaceVertices = 5 points = vtk.vtkPoints() points.InsertNextPoint(1.21412, 0, 1.58931) points.InsertNextPoint(0.375185, 1.1547, 1.58931) points.InsertNextPoint(-0.982247, 0.713644, 1.58931) points.InsertNextPoint(-0.982247, -0.713644, 1.58931) points.InsertNextPoint(0.375185, -1.1547, 1.58931) points.InsertNextPoint(1.96449, 0, 0.375185) points.InsertNextPoint(0.607062, 1.86835, 0.375185) points.InsertNextPoint(-1.58931, 1.1547, 0.375185) points.InsertNextPoint(-1.58931, -1.1547, 0.375185) points.InsertNextPoint(0.607062, -1.86835, 0.375185) points.InsertNextPoint(1.58931, 1.1547, -0.375185) points.InsertNextPoint(-0.607062, 1.86835, -0.375185) points.InsertNextPoint(-1.96449, 0, -0.375185) points.InsertNextPoint(-0.607062, -1.86835, -0.375185) points.InsertNextPoint(1.58931, -1.1547, -0.375185) points.InsertNextPoint(0.982247, 0.713644, -1.58931) points.InsertNextPoint(-0.375185, 1.1547, -1.58931) points.InsertNextPoint(-1.21412, 0, -1.58931) points.InsertNextPoint(-0.375185, -1.1547, -1.58931) points.InsertNextPoint(0.982247, -0.713644, -1.58931) # Dimensions are [numberOfFaces][numberOfFaceVertices] dodechedronFace = [ [0, 1, 2, 3, 4], [0, 5, 10, 6, 1], [1, 6, 11, 7, 2], [2, 7, 12, 8, 3], [3, 8, 13, 9, 4], [4, 9, 14, 5, 0], [15, 10, 5, 14, 19], [16, 11, 6, 10, 15], [17, 12, 7, 11, 16], [18, 13, 8, 12, 17], [19, 14, 9, 13, 18], [19, 18, 17, 16, 15] ] dodechedronFacesIdList = vtk.vtkIdList() # Number faces that make up the cell. dodechedronFacesIdList.InsertNextId(numberOfFaces) for face in dodechedronFace: # Number of points in the face == numberOfFaceVertices dodechedronFacesIdList.InsertNextId(len(face)) # Insert the pointIds for that face. [dodechedronFacesIdList.InsertNextId(i) for i in face] uGrid = vtk.vtkUnstructuredGrid() uGrid.InsertNextCell(vtk.VTK_POLYHEDRON, dodechedronFacesIdList) uGrid.SetPoints(points) return uGrid def MakePyramid(): """ Make a regular square pyramid. """ numberOfVertices = 5 points = vtk.vtkPoints() p = [ [1.0, 1.0, 0.0], [-1.0, 1.0, 0.0], [-1.0, -1.0, 0.0], [1.0, -1.0, 0.0], [0.0, 0.0, 1.0] ] for pt in p: points.InsertNextPoint(pt) pyramid = vtk.vtkPyramid() for i in range(0, numberOfVertices): pyramid.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(pyramid.GetCellType(), pyramid.GetPointIds()) return ug def MakeTetrahedron(): """ Make a tetrahedron. """ numberOfVertices = 4 points = vtk.vtkPoints() points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(1, 0, 0) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(0, 1, 1) tetra = vtk.vtkTetra() for i in range(0, numberOfVertices): tetra.GetPointIds().SetId(i, i) cellArray = vtk.vtkCellArray() cellArray.InsertNextCell(tetra) unstructuredGrid = vtk.vtkUnstructuredGrid() unstructuredGrid.SetPoints(points) unstructuredGrid.SetCells(vtk.VTK_TETRA, cellArray) return unstructuredGrid def MakeVoxel(): """ A voxel is a representation of a regular grid in 3-D space. """ numberOfVertices = 8 points = vtk.vtkPoints() points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(1, 0, 0) points.InsertNextPoint(0, 1, 0) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(0, 0, 1) points.InsertNextPoint(1, 0, 1) points.InsertNextPoint(0, 1, 1) points.InsertNextPoint(1, 1, 1) voxel = vtk.vtkVoxel() for i in range(0, numberOfVertices): voxel.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(voxel.GetCellType(), voxel.GetPointIds()) return ug def MakeWedge(): """ A wedge consists of two triangular ends and three rectangular faces. """ numberOfVertices = 6 points = vtk.vtkPoints() points.InsertNextPoint(0, 1, 0) points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(0, .5, .5) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(1, 0.0, 0.0) points.InsertNextPoint(1, .5, .5) wedge = vtk.vtkWedge() for i in range(0, numberOfVertices): wedge.GetPointIds().SetId(i, i) ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(wedge.GetCellType(), wedge.GetPointIds()) return ug def WritePNG(renWin, fn, magnification=1): """ Screenshot Write out a png corresponding to the render window. :param: renWin - the render window. :param: fn - the file name. :param: magnification - the magnification. """ windowToImageFilter = vtk.vtkWindowToImageFilter() windowToImageFilter.SetInput(renWin) windowToImageFilter.SetMagnification(magnification) # Record the alpha (transparency) channel # windowToImageFilter.SetInputBufferTypeToRGBA() windowToImageFilter.SetInputBufferTypeToRGB() # Read from the back buffer windowToImageFilter.ReadFrontBufferOff() windowToImageFilter.Update() writer = vtk.vtkPNGWriter() writer.SetFileName(fn) writer.SetInputConnection(windowToImageFilter.GetOutputPort()) writer.Write() if __name__ == '__main__': main()
到此这篇关于Python Grid使用和布局详解就介绍到这了。避不开,那么改变它。更多相关Python Grid使用和布局详解内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!