基于tensorflow加载部分层的方法

夕阳是如此的美丽。太阳改变了颜色,火红火红的,没有了中午的那份狂躁与炽热,从远处向它看去,斜晖洒在脸上,脸便立即变成了红褐色,感觉就像是一个慈祥的老人深情的摸着你的头,亲切而又温暖。

一般使用

saver.restore(sess, modeldir + "model.ckpt")

即可加载已经训练好的网络,可是有时候想值使用部分层的参数,这时候可以选择在加载网络之后重新初始化剩下的层

var_list = [weights['wd1'], weights['out'], biases['bd1'], biases['out'], global_step]
initfc = tf.variables_initializer(var_list, name='init')

比如我们想从新初始化var_list中的各个层,在restore之后,再初始化即可

sess.run(init)
saver.restore(sess, modeldir + "model.ckpt")
print sess.run(global_step)
#initialize several layer
sess.run(initfc)
print sess.run(global_step)

即可发现部分变量重新初始化了

以上这篇基于tensorflow加载部分层的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能有感兴趣的文章
深度学习小工程练习之tensorflow垃圾分类详解

tensorflow-gpu2.3版本安装步骤

深度学习tensorflow基础mnist

使用tensorflow进行音乐类型的分类

tensorflow如何继续训练之前保存的模型实例