python实现随机梯度下降法

走自己的路,让别人说去吗!美好的日子带来快乐,阴暗的日子带来经验,所以别对任何一天怀有遗憾。

看这篇文章前强烈建议你看看上一篇python实现梯度下降法:

一、为什么要提出随机梯度下降算法

注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有)

也就是说每次更新权值都需要遍历整个数据集(注意那个求和符号),当数据量小的时候,我们还能够接受这种算法,一旦数据量过大,那么使用该方法会使得收敛过程极度缓慢,并且当存在多个局部极小值时,无法保证搜索到全局最优解。为了解决这样的问题,引入了梯度下降法的进阶形式:随机梯度下降法。

二、核心思想

对于权值的更新不再通过遍历全部的数据集,而是选择其中的一个样本即可(对于程序员来说你的第一反应一定是:在这里需要一个随机函数来选择一个样本,不是吗?),一般来说其步长的选择比梯度下降法的步长要小一点,因为梯度下降法使用的是准确梯度,所以它可以朝着全局最优解(当问题为凸问题时)较大幅度的迭代下去,但是随机梯度法不行,因为它使用的是近似梯度,或者对于全局来说有时候它走的也许根本不是梯度下降的方向,故而它走的比较缓,同样这样带来的好处就是相比于梯度下降法,它不是那么容易陷入到局部最优解中去。

三、权值更新方式

(i表示样本标号下标,j表示样本维数下标)

四、代码实现(大体与梯度下降法相同,不同在于while循环中的内容)

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from matplotlib import style
 
 
#构造数据
def get_data(sample_num=1000):
 """
 拟合函数为
 y = 5*x1 + 7*x2
 :return:
 """
 x1 = np.linspace(0, 9, sample_num)
 x2 = np.linspace(4, 13, sample_num)
 x = np.concatenate(([x1], [x2]), axis=0).T
 y = np.dot(x, np.array([5, 7]).T) 
 return x, y
#梯度下降法
def SGD(samples, y, step_size=2, max_iter_count=1000):
 """
 :param samples: 样本
 :param y: 结果value
 :param step_size: 每一接迭代的步长
 :param max_iter_count: 最大的迭代次数
 :param batch_size: 随机选取的相对于总样本的大小
 :return:
 """
 #确定样本数量以及变量的个数初始化theta值
 
 m, var = samples.shape
 theta = np.zeros(2)
 y = y.flatten()
 #进入循环内
 loss = 1
 iter_count = 0
 iter_list=[]
 loss_list=[]
 theta1=[]
 theta2=[]
 #当损失精度大于0.01且迭代此时小于最大迭代次数时,进行
 while loss > 0.01 and iter_count < max_iter_count:
  loss = 0
  #梯度计算
  theta1.append(theta[0])
  theta2.append(theta[1])  
  #样本维数下标
  rand1 = np.random.randint(0,m,1)
  h = np.dot(theta,samples[rand1].T)
  #关键点,只需要一个样本点来更新权值
  for i in range(len(theta)):
   theta[i] =theta[i] - step_size*(1/m)*(h - y[rand1])*samples[rand1,i]
  #计算总体的损失精度,等于各个样本损失精度之和
  for i in range(m):
   h = np.dot(theta.T, samples[i])
   #每组样本点损失的精度
   every_loss = (1/(var*m))*np.power((h - y[i]), 2)
   loss = loss + every_loss
 
  print("iter_count: ", iter_count, "the loss:", loss)
  
  iter_list.append(iter_count)
  loss_list.append(loss)
  
  iter_count += 1
 plt.plot(iter_list,loss_list)
 plt.xlabel("iter")
 plt.ylabel("loss")
 plt.show()
 return theta1,theta2,theta,loss_list
 
def painter3D(theta1,theta2,loss):
 style.use('ggplot')
 fig = plt.figure()
 ax1 = fig.add_subplot(111, projection='3d')
 x,y,z = theta1,theta2,loss
 ax1.plot_wireframe(x,y,z, rstride=5, cstride=5)
 ax1.set_xlabel("theta1")
 ax1.set_ylabel("theta2")
 ax1.set_zlabel("loss")
 plt.show()
  
if __name__ == '__main__':
 samples, y = get_data()
 theta1,theta2,theta,loss_list = SGD(samples, y)
 print(theta) # 会很接近[5, 7]
 
 painter3D(theta1,theta2,loss_list)

以上就是python实现随机梯度下降法。人只要不失去方向,就不会失去自己。更多关于python实现随机梯度下降法请关注haodaima.com其它相关文章!

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战