生活就是这样,有时候想念也是一种幸福,是那样的美所以愿每一个身边的朋友都珍惜自己来之不易的幸福吧,不管你的幸福是小时大,做最真实的自己,拥有最平凡的幸福!
Python 中导入csv数据的三种方法,具体内容如下所示:
1、通过标准的Python库导入CSV文件:
Python提供了一个标准的类库CSV文件。这个类库中的reader()函数用来导入CSV文件。当CSV文件被读入后,可以利用这些数据生成一个NumPy数组,用来训练算法模型。:
from csv importreader import numpy as np filename=input("请输入文件名: ") withopen(filename,'rt',encoding='UTF-8')as raw_data: readers=reader(raw_data,delimiter=',') x=list(readers) data=np.array(x) print(data) print(data.shape)
2、通过NumPy导入CSV文件
也可以使用NumPy的loadtxt()函数导入数据。使用这个函数处理的数据没有文件头,并且所有的数据结构都是一样的,也就是说,数据类型是一样的。
from numpy importloadtxt filename=input("文件名:") withopen(filename,'rt',encoding='UTF-8')as raw_data: data=loadtxt(raw_data,delimiter=',') print(data)
3、通过Pandas导入CSV文件
通过Pandas来导入CSV文件要使用pandas.read_csv()
函数。这个函数的返回值是DataFrame,可以很方便的进行下一步的处理,实际操作过程中推荐使用这种方法。
在机器学习的项目中,经常利用Pandas来做数据清洗与数据准备工作。
from pandas importread_csv filename=input("文件名:") f=open(filename,encoding='UTF-8') names=['作业日期','ηCO','ηH2','TF(℃)','TC(℃)','mass','送风流量'] data=read_csv(f,names=names) print(data)
总结
以上所述是小编给大家介绍的Python 中导入csv数据的三种方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
到此这篇关于Python 中导入csv数据的三种方法就介绍到这了。如果你的工具只有一柄铁锤,你就可能认为所有的问题都是铁钉。更多相关Python 中导入csv数据的三种方法内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!