Python实现 PS 图像调整中的亮度调整

说了一千句一万句壮志豪言,不行动你还是碌碌无为;如果你行动了,哪怕只是一个小小的动作,你就有可能解决了温饱大计。

本文用 Python 实现 PS 图像调整中的亮度调整,具体的算法原理和效果可以参考之前的博客:

https://www.haodaima.com/article/164191.htm

import matplotlib.pyplot as plt
from skimage import io
file_name='D:/Image Processing/PS Algorithm/4.jpg';
img=io.imread(file_name)
Increment = -10.0
img = img * 1.0 
I = (img[:, :, 0] + img[:, :, 1] + img[:, :, 2])/3.0 + 0.001
mask_1 = I > 128.0
r = img [:, :, 0]
g = img [:, :, 1]
b = img [:, :, 2]
rhs = (r*128.0 - (I - 128.0) * 256.0) / (256.0 - I) 
ghs = (g*128.0 - (I - 128.0) * 256.0) / (256.0 - I)
bhs = (b*128.0 - (I - 128.0) * 256.0) / (256.0 - I)
rhs = rhs * mask_1 + (r * 128.0 / I) * (1 - mask_1)
ghs = ghs * mask_1 + (g * 128.0 / I) * (1 - mask_1)
bhs = bhs * mask_1 + (b * 128.0 / I) * (1 - mask_1)
I_new = I + Increment - 128.0
mask_2 = I_new > 0.0
R_new = rhs + (256.0-rhs) * I_new / 128.0
G_new = ghs + (256.0-ghs) * I_new / 128.0
B_new = bhs + (256.0-bhs) * I_new / 128.0
R_new = R_new * mask_2 + (rhs + rhs * I_new/128.0) * (1-mask_2)
G_new = G_new * mask_2 + (ghs + ghs * I_new/128.0) * (1-mask_2)
B_new = B_new * mask_2 + (bhs + bhs * I_new/128.0) * (1-mask_2)
Img_out = img * 1.0
Img_out[:, :, 0] = R_new
Img_out[:, :, 1] = G_new
Img_out[:, :, 2] = B_new
Img_out = Img_out/255.0
# 饱和处理
mask_1 = Img_out < 0 
mask_2 = Img_out > 1
Img_out = Img_out * (1-mask_1)
Img_out = Img_out * (1-mask_2) + mask_2
plt.figure()
plt.imshow(img/255.0)
plt.axis('off')
plt.figure(2)
plt.imshow(Img_out)
plt.axis('off')
plt.figure(3)
plt.imshow(I/255.0, plt.cm.gray)
plt.axis('off')
plt.show()

总结

以上所述是小编给大家介绍的Python实现 PS 图像调整中的亮度调整 ,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

到此这篇关于Python实现 PS 图像调整中的亮度调整就介绍到这了。各种、 都是妄想,只有消灭妄想,然后才能现出诚意,居高自傲是一种,只有消灭了,然后才能让正气通畅。更多相关Python实现 PS 图像调整中的亮度调整内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战