基于sklearn实现Bagging算法(python)

那浓雾,抓一把,软绵绵;吸一口,甜津津;踩一脚,轻悠悠。既然都是风景,何必纠结与下不去的站,互不干扰,各自安好。

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现Bagging算法的代码如下:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
import csv
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
 content=list(map(float,content))
 if len(content)!=0:
  data.append(content)
  traffic_feature.append(content[0:6])//存放数据集的特征
  traffic_target.append(content[-1])//存放数据集的标签
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature) # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature) # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
tree=DecisionTreeClassifier(criterion='entropy', max_depth=None)
# n_estimators=500:生成500个决策树
clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

运行结果如图所示:

以上就是基于sklearn实现Bagging算法(python)。失败好比被人打,你不反抗他就会有下一次!更多关于基于sklearn实现Bagging算法(python)请关注haodaima.com其它相关文章!

您可能有感兴趣的文章
使用sklearn对多分类的每个类别进行指标评价操作

ML神器:sklearn的快速使用及入门

Python使用sklearn实现的各种回归算法示例

Python使用sklearn库实现的各种分类算法简单应用小结

python sklearn库实现简单逻辑回归的实例代码