乐观主义者从每一个灾难中看到机遇,而悲观主义都从每一个机遇中看到灾难。无论有多困难,都坚强地抬头挺胸,人生是一场醒悟,不要昨日,不要明天,只要今日。
利用Tensorflow训练好的模型,图片进行预测和识别,并输出相应的标签和预测概率。
如果想要多张图片,可以进行批次加载和预测,这里仅用单张图片进行演示。
模型文件:
预测图片:
这里直接贴代码,都有注释,应该很好理解
import tensorflow as tf import inference image_size = 128 # 输入层图片大小 # 模型保存的路径和文件名 MODEL_SAVE_PATH = "model/" MODEL_NAME = "model.ckpt" # 加载需要预测的图片 image_data = tf.gfile.FastGFile("./data/test/d.png", 'rb').read() # 将图片格式转换成我们所需要的矩阵格式,第二个参数为1,代表1维 decode_image = tf.image.decode_png(image_data, 1) # 再把数据格式转换成能运算的float32 decode_image = tf.image.convert_image_dtype(decode_image, tf.float32) # 转换成指定的输入格式形状 image = tf.reshape(decode_image, [-1, image_size, image_size, 1]) # 定义预测结果为logit值最大的分类,这里是前向传播算法,也就是卷积层、池化层、全连接层那部分 test_logit = inference.inference(image, train=False, regularizer=None) # 利用softmax来获取概率 probabilities = tf.nn.softmax(test_logit) # 获取最大概率的标签位置 correct_prediction = tf.argmax(test_logit, 1) # 定义Savar类 saver = tf.train.Saver() with tf.Session() as sess: sess.run((tf.global_variables_initializer(), tf.local_variables_initializer())) # 加载检查点状态,这里会获取最新训练好的模型 ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: # 加载模型和训练好的参数 saver.restore(sess, ckpt.model_checkpoint_path) print("加载模型成功:" + ckpt.model_checkpoint_path) # 通过文件名得到模型保存时迭代的轮数.格式:model.ckpt-6000.data-00000-of-00001 global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] # 获取预测结果 probabilities, label = sess.run([probabilities, correct_prediction]) # 获取此标签的概率 probability = probabilities[0][label] print("After %s training step(s),validation label = %d, has %g probability" % (global_step, label, probability)) else: print("模型加载失败!" + ckpt.model_checkpoint_path)
运行输出结果:
(标签为3,概率为0.984478)
标签字典:
3对应小写d,识别正确。
其他的图片的预测结果:
预测图片1:
标签字典:
图片1,识别结果为1,可能概率0.993034
识别结果还是挺好看的,不知道是不是过拟合了,还是迭代次数不够多,还需要调整调整。
到此这篇关于Tensorflow模型实现预测或识别单张图片就介绍到这了。人这一生能力有限,但是努力无限,努力做一个的人,做一个心态阳光的人,做一个积极向上的人,用正能量激发自己,也感染身边的,你阳光,世界也会因你而精彩!一辈子要记住三句话:看人长处、帮人难处、记人好处,做一个充满正能量的人!更多相关Tensorflow模型实现预测或识别单张图片内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!