python scrapy爬虫代码及填坑

雪让人的觉得只有一个字——冷。大地一片银白,一片清洁,而雪花仍如柳絮,如棉花,如鹅毛从天空飘飘洒洒。

涉及到详情页爬取

目录结构:

kaoshi_bqg.py

import scrapy
from scrapy.spiders import Rule
from scrapy.linkextractors import LinkExtractor
from ..items import BookBQGItem
class KaoshiBqgSpider(scrapy.Spider):
 name = 'kaoshi_bqg'
 allowed_domains = ['biquge5200.cc']
 start_urls = ['https://www.biquge5200.cc/xuanhuanxiaoshuo/']
 rules = (
  # 编写匹配文章列表的规则
  Rule(LinkExtractor(allow=r'https://www.biquge5200.cc/xuanhuanxiaoshuo/'), follow=True),
  # 匹配文章详情
  Rule(LinkExtractor(allow=r'.+/[0-9]{1-3}_[0-9]{2-6}/'), callback='parse_item', follow=False),
 )
 # 小书书名
 def parse(self, response):
  a_list = response.xpath('//*[@id="newscontent"]/div[1]/ul//li//span[1]/a')
  for li in a_list:
   name = li.xpath(".//text()").get()
   detail_url = li.xpath(".//@href").get()
   yield scrapy.Request(url=detail_url, callback=self.parse_book, meta={'info': name})
 # 单本书所有的章节名
 def parse_book(self, response):
  name = response.meta.get('info')
  list_a = response.xpath('//*[@id="list"]/dl/dd[position()>20]//a')
  for li in list_a:
   chapter = li.xpath(".//text()").get()
   url = li.xpath(".//@href").get()
   yield scrapy.Request(url=url, callback=self.parse_content, meta={'info': (name, chapter)})
 # 每章节内容
 def parse_content(self, response):
  name, chapter = response.meta.get('info')
  content = response.xpath('//*[@id="content"]//p/text()').getall()
  item = BookBQGItem(name=name, chapter=chapter, content=content)
  yield item

xmly.py

# -*- coding: utf-8 -*-
import scrapy
from ..items import BookXMLYItem, BookChapterItem
class XmlySpider(scrapy.Spider):
 name = 'xmly'
 allowed_domains = ['ximalaya.com']
 start_urls = ['https://www.ximalaya.com/youshengshu/wenxue/']

 def parse(self, response):
  div_details = response.xpath('//*[@id="root"]/main/section/div/div/div[3]/div[1]/div/div[2]/ul/li/div')
  # details = div_details[::3]
  for details in div_details:
   book_id = details.xpath('./div/a/@href').get().split('/')[-2]
   book_name = details.xpath('./a[1]/@title').get()
   book_author = details.xpath('./a[2]/text()').get() # 作者
   book_url = details.xpath('./div/a/@href').get()
   url = 'https://www.ximalaya.com' + book_url
   # print(book_id, book_name, book_author, url)
   item = BookXMLYItem(book_id=book_id, book_name=book_name, book_author=book_author, book_url=url)
   yield item
   yield scrapy.Request(url=url, callback=self.parse_details, meta={'info': book_id})

 def parse_details(self, response):
  book_id = response.meta.get('info')
  div_details = response.xpath('//*[@id="anchor_sound_list"]/div[2]/ul/li/div[2]')
  for details in div_details:
   chapter_id = details.xpath('./a/@href').get().split('/')[-1]
   chapter_name = details.xpath('./a/text()').get()
   chapter_url = details.xpath('./a/@href').get()
   url = 'https://www.ximalaya.com' + chapter_url
   item = BookChapterItem(book_id=book_id, chapter_id=chapter_id, chapter_name=chapter_name, chapter_url=url)
   yield item

item.py

import scrapy
# 笔趣阁字段
class BookBQGItem(scrapy.Item):
 name = scrapy.Field()
 chapter = scrapy.Field()
 content = scrapy.Field()
# 喜马拉雅 字段
class BookXMLYItem(scrapy.Item):
 book_name = scrapy.Field()
 book_id = scrapy.Field()
 book_url = scrapy.Field()
 book_author = scrapy.Field()
# 喜马拉雅详情字段
class BookChapterItem(scrapy.Item):
 book_id = scrapy.Field()
 chapter_id = scrapy.Field()
 chapter_name = scrapy.Field()
 chapter_url = scrapy.Field()

pipelines.py

from scrapy.exporters import JsonLinesItemExporter
import os
class BqgPipeline(object):
 def process_item(self, item, spider):
  xs = '小说集'
  name = item['name']
  xs_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), xs)
  fiction_path = os.path.join(xs_path, name)
  # print(os.path.dirname(__file__)) D:/Users/Administrator/PycharmProjects/wh1901/biquge.com
  # print(os.path.dirname(os.path.dirname(__file__))) D:/Users/Administrator/PycharmProjects/wh1901
  if not os.path.exists(xs_path): # 如果目录不存在
   os.mkdir(xs_path)
  if not os.path.exists(fiction_path):
   os.mkdir(fiction_path) # 创建目录
  chapter = item['chapter']
  content = item['content']
  file_path = os.path.join(fiction_path, chapter) + '.txt' # 在 该目录下面创建 xx .txt 文件
  with open(file_path, 'w', encoding='utf-8') as fp:
   fp.write(content + '\n')
   print('保存成功')

# class XmlyPipeline(object):
#  def __init__(self):
#   self.fp = open("xmly.json", 'wb')
#   # JsonLinesItemExporter 调度器
#   self.exporter = JsonLinesItemExporter(self.fp, ensure_ascii=False)
#
#  def process_item(self, item, spider):
#   self.exporter.export_item(item)
#   return item
#
#  def close_item(self):
#   self.fp.close()
#   print("爬虫结束")

starts.py

from scrapy import cmdline
cmdline.execute("scrapy crawl kaoshi_bqg".split())
# cmdline.execute("scrapy crawl xmly".split())

然后是爬取到的数据

小说

xmly.json

记录一下爬取过程中遇到的一点点问题:

在爬取详情页的的时候, 刚开始不知道怎么获取详情页的 url 以及 上一个页面拿到的字段

  • 也就是 yield 返回 请求详情页 里面的参数没有很好地理解
  • meta:从其他请求传过来的meta属性,可以用来保持多个请求之间的数据连接。
  • url:这个request对象发送请求的url。
  • callback:在下载器下载完相应的数据后执行的回调函数。

本文python scrapy爬虫代码及填坑到此结束。江无回头浪,人无再少年。年华若虚度,老来恨不浅。时光容易逝,岁月莫消遣。碌碌而无为,生命不值钱。小编再次感谢大家对我们的支持!

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战