python实现bitmap数据结构详解

啊,小雪,小雪,来了,来了。从微微的凉风中,从傍晚的喧闹中来了!像春风抖落万树梨花,像天女撒下漫天白絮……你不飘飘悠悠,因为那是骄傲的象征;你不轻轻起舞,因为那是胆小的缩影,听,沙沙沙沙、沙沙沙沙……我好像坐在屋里听那春雨的歌声。

bitmap是很常用的数据结构,比如用于Bloom Filter中;用于无重复整数的排序等等。bitmap通常基于数组来实现,数组中每个元素可以看成是一系列二进制数,所有元素组成更大的二进制集合。对于Python来说,整数类型默认是有符号类型,所以一个整数的可用位数为31位。bitmap实现思路

bitmap是用于对每一位进行操作。举例来说,一个Python数组包含4个32位有符号整型,则总共可用位为4 * 31 = 124位。如果要在第90个二进制位上操作,则要先获取到操作数组的第几个元素,再获取相应的位索引,然后执行操作。上图所示为一个32位整型,在Python中默认是有符号类型,最高位为符号位,bitmap不能使用它。左边是高位,右边是低位,最低位为第0位。

bitmap是用于对每一位进行操作。举例来说,一个Python数组包含4个32位有符号整型,则总共可用位为4 * 31 = 124位。如果要在第90个二进制位上操作,则要先获取到操作数组的第几个元素,再获取相应的位索引,然后执行操作。

初始化bitmap

首先需要初始化bitmap。拿90这个整数来说,因为单个整型只能使用31位,所以90除以31并向上取整则可得知需要几个数组元素。代码如下:


#!/usr/bin/env python
#coding: utf8

class Bitmap(object):
def __init__(self, max):
self.size = int((max + 31 - 1) / 31) #向上取整

if __name__ == '__main__':
bitmap = Bitmap(90)
print '需要 %d 个元素。' % bitmap.size


$ python bitmap.py
需要 3 个元素。


计算在数组中的索引

计算在数组中的索引其实是跟之前计算数组大小是一样的。只不过之前是对最大数计算,现在换成任一需要存储的整数。但是有一点不同,计算在数组中的索引是向下取整,所以需要修改calcElemIndex方法的实现。代码改为如下:


#!/usr/bin/env python
#coding: utf8

class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]

def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31

if __name__ == '__main__':
bitmap = Bitmap(90)
print '数组需要 %d 个元素。' % bitmap.size
print '47 应存储在第 %d 个数组元素上。' % bitmap.calcElemIndex(47)


$ python bitmap.py
数组需要 3 个元素。
47 应存储在第 1 个数组元素上。

所以获取最大整数很重要,否则有可能创建的数组容纳不下某些数据。

计算在数组元素中的位索引

数组元素中的位索引可以通过取模运算来得到。令需存储的整数跟31取模即可得到位索引。代码改为如下:


#!/usr/bin/env python
#coding: utf8

class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]

def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31

def calcBitIndex(self, num):
return num % 31

if __name__ == '__main__':
bitmap = Bitmap(90)
print '数组需要 %d 个元素。' % bitmap.size
print '47 应存储在第 %d 个数组元素上。' % bitmap.calcElemIndex(47)
print '47 应存储在第 %d 个数组元素的第 %d 位上。' % (bitmap.calcElemIndex(47), bitmap.calcBitIndex(47),)

别忘了是从第0位算起哦。

置1操作

二进制位默认是0,将某位置1则表示在此位存储了数据。代码改为如下:


#!/usr/bin/env python
#coding: utf8

class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]

def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31

def calcBitIndex(self, num):
return num % 31

def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1 << byteIndex)

if __name__ == '__main__':
bitmap = Bitmap(90)
bitmap.set(0)
print bitmap.array

因为从第0位算起,所以如需要存储0,则需要把第0位置1。

清0操作

将某位置0,也即丢弃已存储的数据。代码如下:


#!/usr/bin/env python
#coding: utf8

class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]

def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31

def calcBitIndex(self, num):
return num % 31

def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1 << byteIndex)

def clean(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
elem = self.array[elemIndex]
self.array[elemIndex] = elem & (~(1 << byteIndex))

if __name__ == '__main__':
bitmap = Bitmap(87)
bitmap.set(0)
bitmap.set(34)
print bitmap.array
bitmap.clean(0)
print bitmap.array
bitmap.clean(34)
print bitmap.array

清0和置1是互反操作。

测试某位是否为1

判断某位是否为1是为了取出之前所存储的数据。代码如下:


#!/usr/bin/env python
#coding: utf8

class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]

def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31

def calcBitIndex(self, num):
return num % 31

def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1 << byteIndex)

def clean(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
elem = self.array[elemIndex]
self.array[elemIndex] = elem & (~(1 << byteIndex))

def test(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
if self.array[elemIndex] & (1 << byteIndex):
return True
return False

if __name__ == '__main__':
bitmap = Bitmap(90)
bitmap.set(0)
print bitmap.array
print bitmap.test(0)
bitmap.set(1)
print bitmap.test(1)
print bitmap.test(2)
bitmap.clean(1)
print bitmap.test(1)


$ python bitmap.py
[1, 0, 0]
True
True
False
False


接下来实现一个不重复数组的排序。已知一个无序非负整数数组的最大元素为879,请对其自然排序。代码如下:


#!/usr/bin/env python
#coding: utf8

class Bitmap(object):
def __init__(self, max):
self.size = self.calcElemIndex(max, True)
self.array = [0 for i in range(self.size)]

def calcElemIndex(self, num, up=False):
'''up为True则为向上取整, 否则为向下取整'''
if up:
return int((num + 31 - 1) / 31) #向上取整
return num / 31

def calcBitIndex(self, num):
return num % 31

def set(self, num):
elemIndex = self.calcElemIndex(num)
byteIndex = self.calcBitIndex(num)
elem = self.array[elemIndex]
self.array[elemIndex] = elem | (1 << byteIndex)

def clean(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
elem = self.array[elemIndex]
self.array[elemIndex] = elem & (~(1 << byteIndex))

def test(self, i):
elemIndex = self.calcElemIndex(i)
byteIndex = self.calcBitIndex(i)
if self.array[elemIndex] & (1 << byteIndex):
return True
return False

if __name__ == '__main__':
MAX = 879
suffle_array = [45, 2, 78, 35, 67, 90, 879, 0, 340, 123, 46]
result = []
bitmap = Bitmap(MAX)
for num in suffle_array:
bitmap.set(num)for i in range(MAX + 1):
if bitmap.test(i):
result.append(i)

print '原始数组为: %s' % suffle_array
print '排序后的数组为: %s' % result

bitmap实现了,则利用其进行排序就非常简单了。其它语言也同样可以实现bitmap,但对于静态类型语言来说,比如C/Golang这样的语言,因为可以直接声明无符号整型,所以可用位就变成32位,只需将上述代码中的31改成32即可,这点请大家注意。

到此这篇关于python实现bitmap数据结构详解就介绍到这了。山涧的泉水经过一曲折,才唱出一支美妙的歌。更多相关python实现bitmap数据结构详解内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!

您可能有感兴趣的文章
Python自动化运维-使用Python脚本监控华为AR路由器关键路由变化

Python自动化运维-netmiko模块设备自动发现

Python自动化运维—netmiko模块连接并配置华为交换机

Python自动化运维-利用Python-netmiko模块备份设备配置

Python自动化运维-Paramiko模块和堡垒机实战