C语言结构体,可谓是C强大功能之一,也是C++语言之所以能衍生的有利条件,事实上,当结构体中成员中有函数指针了后,那么,结构体也即C++中的类了。
C语言中,结构体的声明、定义是用到关键字struct,就像联合体用到关键字union、枚举类型用到enum关键字一样,事实上,联合体、枚举类型的用法几乎是参照结构体来的。结构体的声明格式如下:
struct tag-name{ { member 1; … member N; };
因此,定义结构体变量的语句为:struct tag-name varible-name,如struct point pt;其中,point 为tag-name,pt是结构体struct point变量。当然,也可以一次性声明结构体类型和变量,即如下:struct tag-name {…} x,y,z;就类似于int x,y,z;语句一样。也可以在定义结构体变量时即赋初值,即变量初始化,struct point pt={320,200};
当然,也就可以有结构体指针、结构体数组了。访问结构体变量中的member的方法有:如果是由结构体变量名来访问,则是structure-variable-name.member;如果是由结构体变量指针来访问,则是structure-variable-pointer->member;
好了,上面的不是重点,也不难掌握,只是细节问题。结构体具有重要的应用,如下的:
如自引用的结构体,常用来作为二叉树等重要数据结构的实现:假设我们要实现一个普遍的问题的解决算法——统计某些输入的各单词出现的频数。由于输入的单词数是未知,内容未知,长度未知,我们不能对输入进行排序并采用二分查找。……那么,一种解决办法是:将已知的单词排序——通过将每个到达的单词排序到适当位置。当然,实现此功能不能通过线性排序,因为那样有可能很长,相应地,我们将使用二叉树来实现。该二叉树每一个单词为一个二叉树结点,每个结点包括:
- a pointer to the text of the word
- a count of the number of occurences
- a pointer to the left child node
- a pointer to the right child node
其写在程序中,即:
struct tnode{/*the tree node:*/ char *word;/*points to the next*/ int count;/*number of occurences*/ struct tnode *left;/*left child*/ struct tnode *right;/*right child*/ }
完成上述功能的完整程序如下:
#include<stdio.h> #include<ctype.h> #include<string.h> #include"tNode.h" #define MAXWORD 100 struct tnode *addtree(struct tnode *,char *); void treeprint(struct tnode *); int getword(char *,int); struct tnode *talloc(void); char *strdup2(char *); /*word frequency count*/ main() { struct tnode *root; char word[MAXWORD]; root=NULL; while(getword(word,MAXWORD)!=EOF) if(isalpha(word[0])) root=addtree(root,word); treeprint(root); return 0; } #define BUFSIZE 100 char buf[BUFSIZE];/*buffer for ungetch*/ int bufp=0;/*next free position in buf*/ int getch(void)/*get a (possibly pushed back) character*/ { return (bufp>0)? buf[--bufp]:getchar(); } void ungetch(int c)/*push back character on input*/ { if(bufp>=BUFSIZE) printf("ungetch:too many characters\n"); else buf[bufp++]=c; } /*getword:get next word or character from input*/ int getword(char *word,int lim) { int c,getch(void); void ungetch(int); char *w=word; while(isspace(c=getch() )); if(c!=EOF) *w++=c; if(!isalpha(c)){ *w='\0'; return c; } for(;--lim>0;w++) if(!isalnum(*w=getch())){ ungetch(*w); break; } *w='\0'; return word[0]; } /*addtree:add a node with w,at or below p*/ struct tnode *addtree(struct tnode *p,char *w) { int cond; if(p==NULL){/*a new word has arrived*/ p=talloc();/*make a new node*/ p->word=strdup(w); p->count=1; p->left=p->right=NULL; }else if((cond=strcmp(w,p->word))==0) p->count++;/*repeated word*/ else if(cond<0)/*less than into left subtree*/ p->left=addtree(p->left,w); else /*greater than into right subtree*/ p->right=addtree(p->right,w); return p; } /*treeprint:in-order print of tree p*/ void treeprint(struct tnode *p) { if(p!=NULL){ treeprint(p->left); printf("%4d %s\n",p->count,p->word); treeprint(p->right); } } #include<stdlib.h> /*talloc:make a tnode*/ struct tnode *talloc(void) { return (struct tnode *)malloc(sizeof(struct tnode)); } char *strdup2(char *s)/*make a duplicate of s*/ { char *p; p=(char *)malloc(strlen(s)+1);/*+1 for '\0'*/ if(p!=NULL) strcpy(p,s); return p; }
其中,其它的关于union、enum这里就不多说了,再说一个关于结构体的非常重要的应用——位操作:
当然,我们知道,对于位操作,我们可通过#define tables(即用宏和C中的位操作来实现)
如:
#define KEYWORD 01 /*0001*/ #define EXTERNAL 02 /*0010*/ #define STATIC 04 /*0100*/
或
enum{KEYWORD =01,EXTERNAL =02,STATIC =04};
那么,flags|=EXTERNAL|STATIC;将打开flags的EXTERNAL和STATIC位,而
flags&=~(EXTERNAL|STATIC);将关闭flags的EXTERNAL和STATIC位.
然而,上述定义的位模式可以用结构体如下写:
struct{ unsigned int is_keyword:1; unsigned int is_extern:1; unsigned int is_static:1; }flags;/*This defines a variable called flags that contains three 1-bit fields*/
那么,上述打开相应位的操作为:
flags.is_extern=flags.is_static=1;
上述关闭相应位的操作为:
flags.is_extern=flags.is_static=0;
以上就是初步剖析C语言编程中的结构体。什么叫做不简单?能够把简单的事情天天做好,就是不简单;什么叫做不容易?大家公认的、非常容易的事情。非常认真地做好它,就是不容易。更多关于初步剖析C语言编程中的结构体请关注haodaima.com其它相关文章!