java基于jedisLock—redis分布式锁如何实现示例代码

分布式锁是啥? 单机锁的概念:我们正常跑的单机项目(也就是在tomcat下跑一个项目不配置集群)想要在高并发的时候加锁很容易就可以搞定,java提供了很多的机制

分布式锁是啥?

单机锁的概念:我们正常跑的单机项目(也就是在tomcat下跑一个项目不配置集群)想要在高并发的时候加锁很容易就可以搞定,java提供了很多的机制例如:synchronized、volatile、ReentrantLock等锁的机制。

为啥需要分布式锁:当我们的项目比较庞大的时候,单机版的项目已经不能满足吞吐量的需求了,需要对项目做负载均衡,有可能还需要对项目进行解耦拆分成不同的服务,那么肯定是做成分布式的项目,分布式的项目因为是不同的程序控制,所以使用java提供的锁并不能完全保证并发需求,需要借助第三方的框架来实现对并发的阻塞控制,来满足实际业务的需要。

一、使用分布式锁要满足的几个条件:

1.系统是一个分布式系统(关键是分布式,单机的可以使用ReentrantLock或者synchronized代码块来实现)
2.共享资源(各个系统访问同一个资源,资源的载体可能是传统关系型数据库或者NoSQL)
3.同步访问(即有很多个进程同事访问同一个共享资源。没有同步访问,谁管你资源竞争不竞争)

二、应用的场景例子

管理后台的部署架构(多台tomcat服务器+redis【多台tomcat服务器访问一台redis】+mysql【多台tomcat服务器访问一台服务器上的mysql】)就满足使用分布式锁的条件。多台服务器要访问redis全局缓存的资源,如果不使用分布式锁就会出现问题。 看如下伪代码:

 

long N=0L;
//N从redis获取值
if(N<5){
N++;
//N写回redis
}

上面的代码主要实现的功能:

从redis获取值N,对数值N进行边界检查,自加1,然后N写回redis中。 这种应用场景很常见,像秒杀,全局递增ID、IP访问限制等。以IP访问限制来说,恶意攻击者可能发起无限次访问,并发量比较大,分布式环境下对N的边界检查就不可靠,因为从redis读的N可能已经是脏数据。传统的加锁的做法(如java的synchronized和Lock)也没用,因为这是分布式环境,这个同步问题的救火队员也束手无策。在这危急存亡之秋,分布式锁终于有用武之地了。

分布式锁可以基于很多种方式实现,比如zookeeper、redis...。不管哪种方式,他的基本原理是不变的:用一个状态值表示锁,对锁的占用和释放通过状态值来标识。

这里主要讲如何用redis实现分布式锁。

三、使用redis的setNX命令实现分布式锁  

1、实现的原理

Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系。redis的SETNX命令可以方便的实现分布式锁。

2、基本命令解析

1)setNX(SET if Not eXists)

语法:

SETNX key value

将 key 的值设为 value ,当且仅当 key 不存在。

若给定的 key 已经存在,则 SETNX 不做任何动作。

SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写

返回值:

设置成功,返回 1 。

设置失败,返回 0 。

例子:

redis> EXISTS job        # job 不存在
(integer) 0

redis> SETNX job "programmer"  # job 设置成功
(integer) 1

redis> SETNX job "code-farmer"  # 尝试覆盖 job ,失败
(integer) 0

redis> GET job          # 没有被覆盖
"programmer"

所以我们使用执行下面的命令

SETNX lock.foo <current Unix time + lock timeout + 1> 

如返回1,则该客户端获得锁,把lock.foo的键值设置为时间值表示该键已被锁定,该客户端最后可以通过DEL lock.foo来释放该锁。

如返回0,表明该锁已被其他客户端取得,这时我们可以先返回或进行重试等对方完成或等待锁超时。

2)getSET

语法:

GETSET key value

将给定 key 的值设为 value ,并返回 key 的旧值(old value)。

当 key 存在但不是字符串类型时,返回一个错误。

返回值:

返回给定 key 的旧值。

当 key 没有旧值时,也即是, key 不存在时,返回 nil 。

3)get

语法:

GET key

返回值:

当 key 不存在时,返回 nil ,否则,返回 key 的值。

如果 key 不是字符串类型,那么返回一个错误

四、解决死锁

上面的锁定逻辑有一个问题:如果一个持有锁的客户端失败或崩溃了不能释放锁,该怎么解决?

我们可以通过锁的键对应的时间戳来判断这种情况是否发生了,如果当前的时间已经大于lock.foo的值,说明该锁已失效,可以被重新使用。

发生这种情况时,可不能简单的通过DEL来删除锁,然后再SETNX一次(讲道理,删除锁的操作应该是锁拥有这执行的,这里只需要等它超时即可),当多个客户端检测到锁超时后都会尝试去释放它,这里就可能出现一个竞态条件,让我们模拟一下这个场景:

C0操作超时了,但它还持有着锁,C1和C2读取lock.foo检查时间戳,先后发现超时了。
C1 发送DEL lock.foo
C1 发送SETNX lock.foo 并且成功了。
C2 发送DEL lock.foo
C2 发送SETNX lock.foo 并且成功了。

这样一来,C1,C2都拿到了锁!问题大了!

幸好这种问题是可以避免的,让我们来看看C3这个客户端是怎样做的:

C3发送SETNX lock.foo 想要获得锁,由于C0还持有锁,所以Redis返回给C3一个0
C3发送GET lock.foo 以检查锁是否超时了,如果没超时,则等待或重试。
反之,如果已超时,C3通过下面的操作来尝试获得锁:
GETSET lock.foo <current Unix time + lock timeout + 1>
通过GETSET,C3拿到的时间戳如果仍然是超时的,那就说明,C3如愿以偿拿到锁了。

如果在C3之前,有个叫C4的客户端比C3快一步执行了上面的操作,那么C3拿到的时间戳是个未超时的值,这时,C3没有如期获得锁,需要再次等待或重试。留意一下,尽管C3没拿到锁,但它改写了C4设置的锁的超时值,不过这一点非常微小的误差带来的影响可以忽略不计。

注意:为了让分布式锁的算法更稳键些,持有锁的客户端在解锁之前应该再检查一次自己的锁是否已经超时,再去做DEL操作,因为可能客户端因为某个耗时的操作而挂起,操作完的时候锁因为超时已经被别人获得,这时就不必解锁了。 

五、代码实现

expireMsecs 锁持有超时,防止线程在入锁以后,无限的执行下去,让锁无法释放
timeoutMsecs 锁等待超时,防止线程饥饿,永远没有入锁执行代码的机会

注意:项目里面需要先搭建好redis的相关配置

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.StringRedisSerializer;

/**
 * Redis distributed lock implementation.
 *
 * @author zhengcanrui
 */
public class RedisLock {

  private static Logger logger = LoggerFactory.getLogger(RedisLock.class);

  private RedisTemplate redisTemplate;

  private static final int DEFAULT_ACQUIRY_RESOLUTION_MILLIS = 100;

  /**
   * Lock key path.
   */
  private String lockKey;

  /**
   * 锁超时时间,防止线程在入锁以后,无限的执行等待
   */
  private int expireMsecs = 60 * 1000;

  /**
   * 锁等待时间,防止线程饥饿
   */
  private int timeoutMsecs = 10 * 1000;

  private volatile boolean locked = false;

  /**
   * Detailed constructor with default acquire timeout 10000 msecs and lock expiration of 60000 msecs.
   *
   * @param lockKey lock key (ex. account:1, ...)
   */
  public RedisLock(RedisTemplate redisTemplate, String lockKey) {
    this.redisTemplate = redisTemplate;
    this.lockKey = lockKey + "_lock";
  }

  /**
   * Detailed constructor with default lock expiration of 60000 msecs.
   *
   */
  public RedisLock(RedisTemplate redisTemplate, String lockKey, int timeoutMsecs) {
    this(redisTemplate, lockKey);
    this.timeoutMsecs = timeoutMsecs;
  }

  /**
   * Detailed constructor.
   *
   */
  public RedisLock(RedisTemplate redisTemplate, String lockKey, int timeoutMsecs, int expireMsecs) {
    this(redisTemplate, lockKey, timeoutMsecs);
    this.expireMsecs = expireMsecs;
  }

  /**
   * @return lock key
   */
  public String getLockKey() {
    return lockKey;
  }

  private String get(final String key) {
    Object obj = null;
    try {
      obj = redisTemplate.execute(new RedisCallback<Object>() {
        @Override
        public Object doInRedis(RedisConnection connection) throws DataAccessException {
          StringRedisSerializer serializer = new StringRedisSerializer();
          byte[] data = connection.get(serializer.serialize(key));
          connection.close();
          if (data == null) {
            return null;
          }
          return serializer.deserialize(data);
        }
      });
    } catch (Exception e) {
      logger.error("get redis error, key : {}", key);
    }
    return obj != null ? obj.toString() : null;
  }

  private boolean setNX(final String key, final String value) {
    Object obj = null;
    try {
      obj = redisTemplate.execute(new RedisCallback<Object>() {
        @Override
        public Object doInRedis(RedisConnection connection) throws DataAccessException {
          StringRedisSerializer serializer = new StringRedisSerializer();
          Boolean success = connection.setNX(serializer.serialize(key), serializer.serialize(value));
          connection.close();
          return success;
        }
      });
    } catch (Exception e) {
      logger.error("setNX redis error, key : {}", key);
    }
    return obj != null ? (Boolean) obj : false;
  }

  private String getSet(final String key, final String value) {
    Object obj = null;
    try {
      obj = redisTemplate.execute(new RedisCallback<Object>() {
        @Override
        public Object doInRedis(RedisConnection connection) throws DataAccessException {
          StringRedisSerializer serializer = new StringRedisSerializer();
          byte[] ret = connection.getSet(serializer.serialize(key), serializer.serialize(value));
          connection.close();
          return serializer.deserialize(ret);
        }
      });
    } catch (Exception e) {
      logger.error("setNX redis error, key : {}", key);
    }
    return obj != null ? (String) obj : null;
  }

  /**
   * 获得 lock.
   * 实现思路: 主要是使用了redis 的setnx命令,缓存了锁.
   * reids缓存的key是锁的key,所有的共享, value是锁的到期时间(注意:这里把过期时间放在value了,没有时间上设置其超时时间)
   * 执行过程:
   * 1.通过setnx尝试设置某个key的值,成功(当前没有这个锁)则返回,成功获得锁
   * 2.锁已经存在则获取锁的到期时间,和当前时间比较,超时的话,则设置新的值
   *
   * @return true if lock is acquired, false acquire timeouted
   * @throws InterruptedException in case of thread interruption
   */
  public synchronized boolean lock() throws InterruptedException {
    int timeout = timeoutMsecs;
    while (timeout >= 0) {
      long expires = System.currentTimeMillis() + expireMsecs + 1;
      String expiresStr = String.valueOf(expires); //锁到期时间
      if (this.setNX(lockKey, expiresStr)) {
        // lock acquired
        locked = true;
        return true;
      }

      String currentValueStr = this.get(lockKey); //redis里的时间
      if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
        //判断是否为空,不为空的情况下,如果被其他线程设置了值,则第二个条件判断是过不去的
        // lock is expired

        String oldValueStr = this.getSet(lockKey, expiresStr);
        //获取上一个锁到期时间,并设置现在的锁到期时间,
        //只有一个线程才能获取上一个线上的设置时间,因为jedis.getSet是同步的
        if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
          //防止误删(覆盖,因为key是相同的)了他人的锁——这里达不到效果,这里值会被覆盖,但是因为什么相差了很少的时间,所以可以接受

          //[分布式的情况下]:如过这个时候,多个线程恰好都到了这里,但是只有一个线程的设置值和当前值相同,他才有权利获取锁
          // lock acquired
          locked = true;
          return true;
        }
      }
      timeout -= DEFAULT_ACQUIRY_RESOLUTION_MILLIS;

      /*
        延迟100 毫秒, 这里使用随机时间可能会好一点,可以防止饥饿进程的出现,即,当同时到达多个进程,
        只会有一个进程获得锁,其他的都用同样的频率进行尝试,后面有来了一些进行,也以同样的频率申请锁,这将可能导致前面来的锁得不到满足.
        使用随机的等待时间可以一定程度上保证公平性
       */
      Thread.sleep(DEFAULT_ACQUIRY_RESOLUTION_MILLIS);

    }
    return false;
  }


  /**
   * Acqurired lock release.
   */
  public synchronized void unlock() {
    if (locked) {
      redisTemplate.delete(lockKey);
      locked = false;
    }
  }

}

调用:

 RedisLock lock = new RedisLock(redisTemplate, key, 10000, 20000);
 try {
      if(lock.lock()) {
          //需要加锁的代码
        }
      }
    } catch (InterruptedException e) {
      e.printStackTrace();
    }finally {
      //为了让分布式锁的算法更稳键些,持有锁的客户端在解锁之前应该再检查一次自己的锁是否已经超时,再去做DEL操作,因为可能客户端因为某个耗时的操作而挂起,
      //操作完的时候锁因为超时已经被别人获得,这时就不必解锁了。 ————这里没有做
      lock.unlock();
    }

六、一些问题

1、为什么不直接使用expire设置超时时间,而将时间的毫秒数其作为value放在redis中?

如下面的方式,把超时的交给redis处理:

lock(key, expireSec){
isSuccess = setnx key
if (isSuccess)
expire key expireSec
}

这种方式貌似没什么问题,但是假如在setnx后,redis崩溃了,expire就没有执行,结果就是死锁了。锁永远不会超时。

 2、为什么前面的锁已经超时了,还要用getSet去设置新的时间戳的时间获取旧的值,然后和外面的判断超时时间的时间戳比较呢?

因为是分布式的环境下,可以在前一个锁失效的时候,有两个进程进入到锁超时的判断。如:

C0超时了,还持有锁,C1/C2同时请求进入了方法里面

C1/C2获取到了C0的超时时间

C1使用getSet方法

C2也执行了getSet方法

假如我们不加 oldValueStr.equals(currentValueStr) 的判断,将会C1/C2都将获得锁,加了之后,能保证C1和C2只能一个能获得锁,一个只能继续等待。

注意:这里可能导致超时时间不是其原本的超时时间,C1的超时时间可能被C2覆盖了,但是他们相差的毫秒及其小,这里忽略了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持好代码网。

您可能有感兴趣的文章
Redis五大基本数据类型及对应如何使用场景总结

5分钟教你docker安装启动redis全好代码教程(全新方式)

详解springboot配置多个redis连接

Windows 和 Linux 上Redis的安装守护进程配置方法

如何使用Redis如何解决高并发方案及思路解读