昨晚收到客服MM电话,一用户反馈数据库响应非常慢,手机收到load异常报警,登上主机后发现大量sql执行非常慢,有的执行时间超过了10s
优化点一:
SELECT * FROM `sitevipdb`.`game_shares_buy_list` WHERE price>='2.00′ ORDER BY tran_id DESC LIMIT 10;
表结构为:
CREATE TABLE `game_shares_buy_list` ( `tran_id` int(10) unsigned NOT NULL AUTO_INCREMENT, `………..' PRIMARY KEY (`tran_id`), KEY `ind_username` (`username`) ) ENGINE=InnoDB AUTO_INCREMENT=3144200 DEFAULT CHARSET=utf8;
执行计划:
root@127.0.0.1 : sitevipdb 09:10:22> explain SELECT * FROM `sitevipdb`.`game_shares_buy_list` WHERE price>='2.00′ ORDER BY tran_id DESC LIMIT 10; +—-+————-+———————-+——-+—————+———+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+———————-+——-+—————+———+———+——+——+————-+ | 1 | SIMPLE | game_shares_buy_list | index | NULL | PRIMARY | 4 | NULL | 10 | Using where | +—-+————-+———————-+——-+—————+———+———+——+——+————-+ 1 row in set (0.00 sec)
分析该sql的执行计划,由于tran_id是表的主键,所以查询根据主键降序顺序扫描,这样就可以不用排序,
然后在过滤条件price>2.00的记录,看上去这个执行计划貌似非常好,如果查询扫描到了满足条件的10条记录,就会停止扫描;
但是这里有个问题,如果表中有大量的记录是不符合2.00的,意味查询就需要扫描非常多的记录,才能找到符合条件的10条:
root@127.0.0.1 : sitevipdb 09:17:23> select price,count(*) as cnt from `game_shares_buy_list` group by price order by cnt desc limit 10; +——-+——-+ | price | cnt | +——-+——-+ | 1.75 | 39101 | | 1.68 | 38477 | | 1.71 | 34869 | | 1.66 | 34849 | | 1.72 | 34718 | | 1.70 | 33996 | | 1.76 | 32527 | | 1.69 | 27189 | | 1.61 | 25694 | | 1.25 | 25450 |
可以看到表中有大量的记录不是2.00的,所以这个时候不能在根据主键顺序扫描,在过滤记录;
那么是否需要在price建立一个索引:
root@127.0.0.1 : sitevipdb 09:09:01> select count(*) from `game_shares_buy_list` where price>'2′; +———-+ | count(*) | +———-+ | 4087 | +———-+ root@127.0.0.1 : sitevipdb 09:17:31> select count(*) from `game_shares_buy_list` ; +———-+ | count(*) | +———-+ | 1572100 |
从上面price的数据分布可以看出,price的分布相对还是比较集中的,如果在price建立索引,mysql也有可能认为由于需要回表的记录过多,
同时需要额外的排序,而不选择在price上的索引:
root@127.0.0.1 : sitevipdb 09:24:53> alter table game_shares_buy_list add index ind_game_shares_buy_list_price(price); Query OK, 0 rows affected (5.79 sec)
可以看到优化器虽然注意到了我们新加的索引,但是最终还是选择了primary来扫描;
所以这个时候我们加上去的索引没有产生效果,数据库负载依然很高,如果强制走price上的索引,效果会这样:
root@127.0.0.1 : sitevipdb 09:35:38> SELECT * FROM `sitevipdb`.`game_shares_buy_list` WHERE price>='2.0′ ORDER BY tran_id DESC LIMIT 10; 。。。。。 10 rows in set (7.06 sec) root@127.0.0.1 : sitevipdb 09:36:00> SELECT * FROM `sitevipdb`.`game_shares_buy_list` force index(ind_game_shares_buy_list_price) WHERE price>='2.0′ ORDER BY tran_id DESC LIMIT 10; 。。。。 10 rows in set (1.01 sec)
可以看到如果强制走索引,时间已经明显下降了,但是还是有些慢,能不能在快一点?其实我们需要扫描的记录只有10条,但查询在取得这10条记录的时候需要扫描大量无效的记录
怎么降低这个数据:其实只要改写一下sql就可以,我们先从索引中得到满足条件的10个id,在回表进行关联:
root@127.0.0.1 : sitevipdb 09:44:45> select * from game_shares_buy_list t1, -> ( SELECT tran_id FROM sitevipdb.game_shares_buy_list WHERE price>='2.0′ ORDER BY tran_id DESC LIMIT 10) t2 -> where t1.tran_id=t2.tran_id; 10 rows in set (0.00 sec)
可以看到执行时间已经不在秒级别了,和客户电话沟通后,很愿意这样改写sql。
—这里看到是order by tran_id是要额外排序的,索引也可以这样来建立消除排序(tran_id,price)这样可以消除排序,同时可以利用order by desc/asc +limit M,N的优化。
优化点二:
CREATE TABLE `game_session` ( `session_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT , `session_expires` int(10) unsigned NOT NULL DEFAULT '0′, `client_ip` varchar(16) DEFAULT NULL, `session_data` text, ……………………. PRIMARY KEY (`session_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
查询为select `session_data`, `session_expires` from `game_session` where session_id='xxx'出现大量等待情况
同时该表的insert,也有等待的现象;
可以看到这个表结构设计是有些问题的,咨询了客户后,可以改为下面结构:
CREATE TABLE `game_session` ( id int auto_increment, `session_id` varchar(30) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT , `session_expires` int(10) unsigned NOT NULL DEFAULT '0′, `client_ip` varchar(16) DEFAULT NULL, `session_data` varchar(200), PRIMARY KEY (id), key ind_session_id(session_id,session_data, session_expires) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
小结:
- 新增自增主键id作为表的主键,这样对插入的性能提升是很好的,同时也降低了表主键的大小;
- 将session_data由text改为了varchar(200),咨询了客户后,这个字段可以不用大字段存储,同时有text改为了varchar,就可以冗余到索引中;
- 由于查询可以使用覆盖索引来完成,所以将查询的3个字段冗余到索引中,查询通过索引完成,不用回表
到此这篇关于MySQL的id关联和索引如何使用的实际优化案例就介绍到这了。避不开,那么改变它。更多相关MySQL的id关联和索引如何使用的实际优化案例内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!