也许你想成为太阳,可你却只是一颗星辰;也许你想成为大树,可你却是一棵小草。于是,你有些自卑。其实,你和别人一样,也是一片风景:做不了太阳,就做星辰,在自我的星座发光发热;做不了大树,就做小草,以自我的绿色装点期望……
本文实例讲述了JS基于贪心算法解决背包问题。分享给大家供大家参考,具体如下:
贪心算法:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
寻找最优解的过程,目的是得到当前最优解
部分背包问题:固定容积的背包能放入物品的总最大价值
物品 A B C D
价格 50 220 60 60
尺寸 5 20 10 12
比率 10 11 6 5
按比例降序尽可能多放入物品
function greedy(values, weights, capacity){ var returnValue = 0 var remainCapacity = capacity var sortArray = [] values.map((cur, index) =>{ sortArray.push({ 'value': values[index], 'weight': weights[index], 'ratio': values[index]/weights[index] }) }) sortArray.sort(function(a, b){ return b.ratio > a.ratio }) console.log(sortArray) sortArray.map((cur,index) => { var num = parseInt(remainCapacity/cur.weight) console.log(num) remainCapacity -= num*cur.weight returnValue += num*cur.value }) return returnValue } var items = ['A','B','C','D'] var values = [50,220,60,60] var weights = [5,20,10,12] var capacity = 32 //背包容积 greedy(values, weights, capacity) // 320
希望本文所述对大家JavaScript程序设计有所帮助。
到此这篇关于JS基于贪心算法解决背包问题示例就介绍到这了。你不能决定生命的长短,但你可以控制它的质量;你不能左右天气,但你可以改变心情;你不能改变容貌,但你可以展现笑容;你不能控制他人,但你可以掌握自己;你不能预知明天,但你可以掌握今天;你不能样样胜利,但你可以事事尽心。更多相关JS基于贪心算法解决背包问题示例内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!