浅谈Node.js:理解stream

泥土的味道是苦涩的,海水的味道是苦咸的,树林中清新的空气也有着一丝苦津津的味道。这苦的大自然,孕育了人们交织着各种苦痛的心灵。广袤的土地,浩瀚的海洋,辽阔的天空,构成了我们这个世界。

Stream在node.js中是一个抽象的接口,基于EventEmitter,也是一种Buffer的高级封装,用来处理流数据。流模块便是提供各种API让我们可以很简单的使用Stream。

流分为四种类型,如下所示:

  • Readable,可读流
  • Writable,可写流
  • Duplex,读写流
  • Transform,扩展的Duplex,可修改写入的数据

1、Readable可读流

通过stream.Readable可创建一个可读流,它有两种模式:暂停和流动。

在流动模式下,将自动从下游系统读取数据并使用data事件输出;暂停模式下,必须显示调用stream.read()方法读取数据,并触发data事件。

所有的可读流最开始都是暂停模式,可以通过以下方法切换到流动模式:

  • 监听'data'事件
  • 调用stream.resume()方法
  • 调用stream.pipe()方法将数据输出到一个可写流Writable

同样地,也可以切换到暂停模式,有两种方法:

  • 如果没有设置pipe目标,调用stream.pause()方法即可。
  • 如果设置了pipe目标,则需要移除所有的data监听和调用stream.unpipe()方法

在Readable对象中有一个_readableSate的对象,通过该对象可以得知流当前处于什么模式,如下所示:

  • readable._readableState.flowing = null,没有数据消费者,流不产生数据
  • readable._readableState.flowing = true,处于流动模式
  • readable._readableState.flowing = false,处于暂停模式

为什么使用流取数据

对于小文件,使用fs.readFile()方法读取数据更方便,但需要读取大文件的时候,比如几G大小的文件,使用该方法将消耗大量的内存,甚至使程序崩溃。这种情况下,使用流来处理是更合适的,采用分段读取,便不会造成内存的'爆仓'问题。

data事件

在stream提供数据块给消费者时触发,有可能是切换到流动模式的时候,也有可能是调用readable.read()方法且有有效数据块的时候,使用如下所示:

const fs = require('fs');

const rs = fs.createReadStream('./appbak.js');
var chunkArr = [],
  chunkLen = 0;
rs.on('data',(chunk)=>{
  chunkArr.push(chunk);
  chunkLen+=chunk.length;
});
rs.on('end',(chunk)=>{
  console.log(Buffer.concat(chunkArr,chunkLen).toString());
});

readable事件

当流中有可用数据能被读取时触发,分为两种,新的可用的数据和到达流的末尾,前者stream.read()方法返回可用数据,后者返回null,如下所示:

const rs = fs.createReadStream('./appbak.js');
var chunkArr = [],
  chunkLen = 0;

rs.on('readable',()=>{
  var chunk = null;
  //这里需要判断是否到了流的末尾
  if((chunk = rs.read()) !== null){
    chunkArr.push(chunk);
    chunkLen+=chunk.length;
  }
});
rs.on('end',(chunk)=>{
  console.log(Buffer.concat(chunkArr,chunkLen).toString());
});

pause和resume方法

stream.pause()方法让流进入暂停模式,并停止'data'事件触发,stream.resume()方法使流进入流动模式,并恢复'data'事件触发,也可以用来消费所有数据,如下所示:

const rs = fs.createReadStream('./下载.png');
rs.on('data',(chunk)=>{
  console.log(`接收到${chunk.length}字节数据...`);
  rs.pause();
  console.log(`数据接收将暂停1.5秒.`);
  setTimeout(()=>{
    rs.resume();
  },1000);
});
rs.on('end',(chunk)=>{
  console.log(`数据接收完毕`);
});

pipe(destination[, options])方法

pipe()方法绑定一个可写流到可读流上,并自动切换到流动模式,将所有数据输出到可写流,以及做好了数据流的管理,不会发生数据丢失的问题,使用如下所示:

const rs = fs.createReadStream('./app.js');
rs.pipe(process.stdout);

以上介绍了多种可读流的数据消费的方法,但对于一个可读流,最好只选择其中的一种,推荐使用pipe()方法。

2、Writable可写流

所有的可写流都是基于stream.Writable类创建的,创建之后便可将数据写入该流中。

write(chunk[, encoding][, callback])方法

write()方法向可写流中写入数据,参数含义:

  • chunk,字符串或buffer
  • encoding,若chunk为字符串,则是chunk的编码
  • callback,当前chunk数据写入磁盘时的回调函数

该方法的返回值为布尔值,如果为false,则表示需要写入的数据块被缓存并且此时缓存的大小超出highWaterMark阀值,否则为true。

使用如下所示:

const ws = fs.createWriteStream('./test.txt');
ws.write('nihao','utf8',()=>{process.stdout.write('this chunk is flushed.');});
ws.end('done.')

背压机制

如果可写流的写入速度跟不上可读流的读取速度,write方法添加的数据将被缓存,逐渐增多,导致占用大量内存。我们希望的是消耗一个数据,再去读取一个数据,这样内存就维持在一个水平上。如何做到这一点?可以利用write方法的返回值来判断可写流的缓存状态和'drain'事件,及时切换可读流的模式,如下所示:

function copy(src,dest){
  src = path.resolve(src);
  dest = path.resolve(dest);
  const rs = fs.createReadStream(src);
  const ws = fs.createWriteStream(dest);
  console.log('正在复制中...');
  const stime = +new Date();
  rs.on('data',(chunk)=>{
    if(null === ws.write(chunk)){
      rs.pause();
    }
  });
  ws.on('drain',()=>{
    rs.resume();
  });
  rs.on('end',()=>{
    const etime = +new Date();
    console.log(`已完成,用时:${(etime-stime)/1000}秒`);
    ws.end();
  });
  function calcProgress(){
    
  }
}
copy('./CSS权威指南 第3版.pdf','./javascript.pdf');

drain事件

如果Writable.write()方法返回false,则drain事件将会被触发,上面的背压机制已经使用了该事件。

finish事件

在调用stream.end()方法之后且所有缓存区的数据都被写入到下游系统,就会触发该事件,如下所示:

const ws = fs.createWriteStream('./alphabet.txt');
const alphabetStr = 'abcdefghijklmnopqrstuvwxyz';
ws.on('finish',()=>{
  console.log('done.');
});
for(let letter of alphabetStr.split()){
  ws.write(letter);
}
ws.end();//必须调用

end([chunk][, encoding][, callback])方法

end()方法被调用之后,便不能再调用stream.write()方法写入数据,负责将抛出错误。

3、Duplex读写流

Duplex流同时实现了Readable与Writable类的接口,既是可读流,也是可写流。例如'zlib streams'、'crypto streams'、'TCP sockets'等都是Duplex流。

4、Transform流

Duplex流的扩展,区别在于,Transform流自动将写入端的数据变换后添加到可读端。例如:'zlib streams'、'crypto streams'等都是Transform流。

5、四种流的实现

stream模块提供的API可以让我们很简单的实现流,该模块使用require('stream')引用,我们只要继承四种流中的一个基类(stream.Writable, stream.Readable, stream.Duplex, or stream.Transform),然后实现它的接口就可以了,需要实现的接口如下所示:

| Use-case | Class | Method(s) to implement |
| ------------- |-------------| -----|
| Reading only | Readable | _read |
| Writing only | Writable | _write, _writev |
| Reading and writing | Duplex | _read, _write, _writev |
| Operate on written data, then read the result | Transform | _transform, _flush |

Readable流实现

如上所示,我们只要继承Readable类并实现_read接口即可,,如下所示:

const Readable = require('stream').Readable;
const util = require('util');
const alphabetArr = 'abcdefghijklmnopqrstuvwxyz'.split();
/*function AbReadable(){
  if(!this instanceof AbReadable){
    return new AbReadable();
  }
  Readable.call(this);
}
util.inherits(AbReadable,Readable);
AbReadable.prototype._read = function(){
  if(!alphabetArr.length){
    this.push(null);
  }else{
    this.push(alphabetArr.shift());
  }
};

const abReadable = new AbReadable();
abReadable.pipe(process.stdout);*/

/*class AbReadable extends Readable{
  constructor(){
    super();
  }
  _read(){
    if(!alphabetArr.length){
      this.push(null);
    }else{
      this.push(alphabetArr.shift());
    }
  }
}
const abReadable = new AbReadable();
abReadable.pipe(process.stdout);*/

/*const abReadable = new Readable({
  read(){
    if(!alphabetArr.length){
      this.push(null);
    }else{
      this.push(alphabetArr.shift());
    }
  }
});
abReadable.pipe(process.stdout);*/

const abReadable = Readable();
abReadable._read = function(){
  if (!alphabetArr.length) {
    this.push(null);
  } else {
    this.push(alphabetArr.shift());
  }
}
abReadable.pipe(process.stdout);

以上代码使用了四种方法创建一个Readable可读流,必须实现_read()方法,以及用到了readable.push()方法,该方法的作用是将指定的数据添加到读取队列。

Writable流实现

我们只要继承Writable类并实现_write或_writev接口,如下所示(只使用两种方法):

/*class MyWritable extends Writable{
  constructor(){
    super();
  }
  _write(chunk,encoding,callback){
    process.stdout.write(chunk);
    callback();
  }
}
const myWritable = new MyWritable();*/
const myWritable = new Writable({
  write(chunk,encoding,callback){
    process.stdout.write(chunk);
    callback();
  }
});
myWritable.on('finish',()=>{
  process.stdout.write('done');
})
myWritable.write('a');
myWritable.write('b');
myWritable.write('c');
myWritable.end();

Duplex流实现

实现Duplex流,需要继承Duplex类,并实现_read和_write接口,如下所示:

class MyDuplex extends Duplex{
  constructor(){
    super();
    this.source = [];
  }
  _read(){
    if (!this.source.length) {
      this.push(null);
    } else {
      this.push(this.source.shift());
    }
  }
  _write(chunk,encoding,cb){
    this.source.push(chunk);
    cb();
  }
}

const myDuplex = new MyDuplex();
myDuplex.on('finish',()=>{
  process.stdout.write('write done.')
});
myDuplex.on('end',()=>{
  process.stdout.write('read done.')
});
myDuplex.write('\na\n');
myDuplex.write('c\n');
myDuplex.end('b\n');
myDuplex.pipe(process.stdout);

上面的代码实现了_read()方法,可作为可读流来使用,同时实现了_write()方法,又可作为可写流来使用。

Transform流实现

实现Transform流,需要继承Transform类,并实现_transform接口,如下所示:

class MyTransform extends Transform{
  constructor(){
    super();
  }
  _transform(chunk, encoding, callback){
    chunk = (chunk+'').toUpperCase();
    callback(null,chunk);
  }
}
const myTransform = new MyTransform();
myTransform.write('hello world!');
myTransform.end();
myTransform.pipe(process.stdout);

上面代码中的_transform()方法,其第一个参数,要么为error,要么为null,第二个参数将被自动转发给readable.push()方法,因此该方法也可以使用如下写法:

_transform(chunk, encoding, callback){
  chunk = (chunk+'').toUpperCase()
  this.push(chunk)
  callback();
}

Object Mode流实现

我们知道流中的数据默认都是Buffer类型,可读流的数据进入流中便被转换成buffer,然后被消耗,可写流写入数据时,底层调用也将其转化为buffer。但将构造函数的objectMode选择设置为true,便可产生原样的数据,如下所示:

const rs = Readable();
rs.push('a');
rs.push('b');
rs.push(null);
rs.on('data',(chunk)=>{console.log(chunk);});//<Buffer 61>与<Buffer 62>

const rs1 = Readable({objectMode:!0});
rs1.push('a');
rs1.push('b');
rs1.push(null);
rs1.on('data',(chunk)=>{console.log(chunk);});//a与b

下面利用Transform流实现一个简单的CSS压缩工具,如下所示:

function minify(src,dest){
  const transform = new Transform({
    transform(chunk,encoding,cb){
      cb(null,(chunk.toString()).replace(/[\s\r\n\t]/g,''));
    }
  });
  fs.createReadStream(src,{encoding:'utf8'}).pipe(transform).pipe(fs.createWriteStream(dest));
}
minify('./reset.css','./reset.min.css');

到此这篇关于浅谈Node.js:理解stream就介绍到这了。争分夺秒巧复习,勤学苦练创佳绩攀蟾折桂,舍我其谁更多相关浅谈Node.js:理解stream内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!

您可能有感兴趣的文章
JS获取鼠标点击时的位置

vue、nginx部署后刷新报404错误的解决方法

electron-builder配置项

VUE聊天页面自动滚动到底部

VUE CTRL+ENTER换行,ENTER发送消息